429 research outputs found

    Locating vernacular creativity outside the ‘urban cool’ in Beijing: ephemeral water calligraphy

    Get PDF
    How and where to be creative, and what creativity entails and affords has been subject to momentous change in recent decades in China. Since the early 2000s, the discourse of creativity has played a leading role in governmental policies that aim to boost economic development through a focus on the creative industries. First-tier Chinese cities have reinvented themselves as creative hotbeds with distinctive areas, often located at the fringes of the city, for creative production and practice (Ren and Meng [2012]. Artistic urbanization: creative industries and creative control in Beijing. International journal of urban and regional research, 36 (3), 504–521, Power, capital, and artistic freedom: contemporary Chinese art communities and the city. Cultural studies, 33 (4), 657–689). This article complicates this creative-city script, one that is deeply enmeshed in a global proliferation of the creativity discourse in tandem with Chinese state policies, by examining the practice of water calligraphy. This is an urban ephemeral creative practice that takes place in public parks in the centre of Beijing. Water calligraphy, done by the elderly in Beijing, challenges the idea of creativity as the domain of a young cool urban class, while its ephemerality contests ideas that urban creativity is necessarily forced into structures of commodification and governmentalization. Water calligraphers' adherence to the traditional discourse of calligraphy, despite several creative deviations, further challenges notions of creativity that identify it with novelty. Within the urban landscape, these senior citizens carve out a creative space for themselves outside designated art districts and creative industries clusters. In doing so, they disregard the imperative of the new that is conventionally believed to underpin ‘real’ creativity, and thus may help us to rethink the idea of creativity itself

    Radiation induced currents in mineral-insulated cables and in pick-up coils: model calculations and experimental verification in the BR1 reactor

    Get PDF
    Mineral-insulated (MI) cables and Low-Temperature Co-fired Ceramic (LTCC) magnetic pick-up coils are intended to be installed in various position in ITER. The severe ITER nuclear radiation field is expected to lead to induced currents that could perturb diagnostic measurements. In order to assess this problem and to find mitigation strategies models were developed for the calculation of neutron-and gamma-induced currents in MI cables and in LTCC coils. The models are based on calculations with the MCNPX code, combined with a dedicated model for the drift of electrons stopped in the insulator. The gamma induced currents can be easily calculated with a single coupled photon-electron MCNPX calculation. The prompt neutron induced currents requires only a single coupled neutron-photon-electron MCNPX run. The various delayed neutron contributions require a careful analysis of all possibly relevant neutron-induced reaction paths and a combination of different types of MCNPX calculations. The models were applied for a specific twin-core copper MI cable, for one quad-core copper cable and for silver conductor LTCC coils (one with silver ground plates in order to reduce the currents and one without such silver ground plates). Calculations were performed for irradiation conditions (neutron and gamma spectra and fluxes) in relevant positions in ITER and in the Y3 irradiation channel of the BR1 reactor at SCK•CEN, in which an irradiation test of these four test devices was carried out afterwards. We will present the basic elements of the models and show the results of all relevant partial currents (gamma and neutron induced, prompt and various delayed currents) in BR1-Y3 conditions. Experimental data will be shown and analysed in terms of the respective contributions. The tests were performed at reactor powers of 350 kW and 1 MW, leading to thermal neutron fluxes of 1E11 n/cm2s and 3E11 n/cm2s, respectively. The corresponding total radiation induced currents are ranging from 1 to 7 nA only, putting a challenge on the acquisition system and on the data analysis. The detailed experimental results will be compared with the corresponding values predicted by the model. The overall agreement between the experimental data and the model predictions is fairly good, with very consistent data for the main delayed current components, while the lower amplitude delayed currents and some of the prompt contributions show some minor discrepancies

    Our Museum Game:A Collaborative Game for User-Centered Exhibition Design

    Get PDF

    Feasibility of Sentinel Node Biopsy in Head and Neck Melanoma Using a Hybrid Radioactive and Fluorescent Tracer

    Get PDF
    This study was designed to examine the feasibility of combining lymphoscintigraphy and intraoperative sentinel node identification in patients with head and neck melanoma by using a hybrid protein colloid that is both radioactive and fluorescent. Eleven patients scheduled for sentinel node biopsy in the head and neck region were studied. Approximately 5 h before surgery, the hybrid nanocolloid labeled with indocyanine green (ICG) and technetium-99m ((99m)Tc) was injected intradermally in four deposits around the scar of the primary melanoma excision. Subsequent lymphoscintigraphy and single photon emission computed tomography with computed tomography (SPECT/CT) were performed to identify the sentinel nodes preoperatively. In the operating room, patent blue dye was injected in 7 of the 11 patients. Intraoperatively, sentinel nodes were acoustically localized with a gamma ray detection probe and visualized by using patent blue dye and/or fluorescence-based tracing with a dedicated near-infrared light camera. A portable gamma camera was used before and after sentinel node excision to confirm excision of all sentinel nodes. A total of 27 sentinel nodes were preoperatively identified on the lymphoscintigraphy and SPECT/CT images. All sentinel nodes could be localized intraoperatively. In the seven patients in whom blue dye was used, 43% of the sentinel nodes stained blue, whereas all were fluorescent. The portable gamma camera identified additional sentinel nodes in two patients. Ex vivo, all radioactive lymph nodes were fluorescent and vice versa, indicating the stability of the hybrid tracer. ICG-(99m)Tc-nanocolloid allows for preoperative sentinel node visualization and concomitant intraoperative radio- and fluorescence guidance to the same sentinel nodes in head and neck melanoma patient

    Optical polarization of neutron-rich sodium isotopes and β\beta-NMR measurements of quadrupole moments

    Get PDF
    The nuclear quadrupole moments of neutron-rich sodium isotopes are being investigated with the help of in-beam polarization by optical pumping in combination with β\beta-NMR techniques. First measurements have yielded the quadrupole splittings of NMR signals in the lattice of LiNbO3_{3} for the isotopes 26^{26}Na, 27^{27}Na and 28^{28}Na. Interaction constants and ratios of the electric quadrupole moments are derived. In view of future experiments, β\beta-decay asymmetries for the sequence of isotopes up to the NN=20 neutron shell closure, 2631^{26-31}Na, have been measured

    On the odd-even staggering of mean square charge radii in the light krypton and strontium region

    Get PDF
    Recently isotope shifts of 72,7496^{72,74-96}Kr and 77100^{77-100}Sr have been measured at the ISOLDE/ CERN mass separator facility by collinear laser spectroscopy. The deduced changes in mean square charge radii reveal sharp transitions in nuclear shape from spherical near the magic neutron number N=50 towards strongly deformed for both the neutron deficient and neutron rich isotopes far from stability. The mean square charge radii of the neutron deficient isotopes exhibit a sign change of the odd-even staggering (OES), i.e. below the neutron number N=46 the radius is systematically larger for the odd-N nuclei than for their even-N neighbours. This is in contrast to the situation of normal OES which is observed for the heavier isotopes. The inversion of the OES is interpreted as an effect of polarization, triggered by the addition of an unpaired neutron and driving the soft even-even core into stable strong deformation
    corecore