426 research outputs found

    Our Museum Game:A Collaborative Game for User-Centered Exhibition Design

    Get PDF

    Feasibility of Sentinel Node Biopsy in Head and Neck Melanoma Using a Hybrid Radioactive and Fluorescent Tracer

    Get PDF
    This study was designed to examine the feasibility of combining lymphoscintigraphy and intraoperative sentinel node identification in patients with head and neck melanoma by using a hybrid protein colloid that is both radioactive and fluorescent. Eleven patients scheduled for sentinel node biopsy in the head and neck region were studied. Approximately 5 h before surgery, the hybrid nanocolloid labeled with indocyanine green (ICG) and technetium-99m ((99m)Tc) was injected intradermally in four deposits around the scar of the primary melanoma excision. Subsequent lymphoscintigraphy and single photon emission computed tomography with computed tomography (SPECT/CT) were performed to identify the sentinel nodes preoperatively. In the operating room, patent blue dye was injected in 7 of the 11 patients. Intraoperatively, sentinel nodes were acoustically localized with a gamma ray detection probe and visualized by using patent blue dye and/or fluorescence-based tracing with a dedicated near-infrared light camera. A portable gamma camera was used before and after sentinel node excision to confirm excision of all sentinel nodes. A total of 27 sentinel nodes were preoperatively identified on the lymphoscintigraphy and SPECT/CT images. All sentinel nodes could be localized intraoperatively. In the seven patients in whom blue dye was used, 43% of the sentinel nodes stained blue, whereas all were fluorescent. The portable gamma camera identified additional sentinel nodes in two patients. Ex vivo, all radioactive lymph nodes were fluorescent and vice versa, indicating the stability of the hybrid tracer. ICG-(99m)Tc-nanocolloid allows for preoperative sentinel node visualization and concomitant intraoperative radio- and fluorescence guidance to the same sentinel nodes in head and neck melanoma patient

    Optical polarization of neutron-rich sodium isotopes and ÎČ\beta-NMR measurements of quadrupole moments

    Get PDF
    The nuclear quadrupole moments of neutron-rich sodium isotopes are being investigated with the help of in-beam polarization by optical pumping in combination with ÎČ\beta-NMR techniques. First measurements have yielded the quadrupole splittings of NMR signals in the lattice of LiNbO3_{3} for the isotopes 26^{26}Na, 27^{27}Na and 28^{28}Na. Interaction constants and ratios of the electric quadrupole moments are derived. In view of future experiments, ÎČ\beta-decay asymmetries for the sequence of isotopes up to the NN=20 neutron shell closure, 26−31^{26-31}Na, have been measured

    On the odd-even staggering of mean square charge radii in the light krypton and strontium region

    Get PDF
    Recently isotope shifts of 72,74−96^{72,74-96}Kr and 77−100^{77-100}Sr have been measured at the ISOLDE/ CERN mass separator facility by collinear laser spectroscopy. The deduced changes in mean square charge radii reveal sharp transitions in nuclear shape from spherical near the magic neutron number N=50 towards strongly deformed for both the neutron deficient and neutron rich isotopes far from stability. The mean square charge radii of the neutron deficient isotopes exhibit a sign change of the odd-even staggering (OES), i.e. below the neutron number N=46 the radius is systematically larger for the odd-N nuclei than for their even-N neighbours. This is in contrast to the situation of normal OES which is observed for the heavier isotopes. The inversion of the OES is interpreted as an effect of polarization, triggered by the addition of an unpaired neutron and driving the soft even-even core into stable strong deformation

    Moments and mean square charge radii of short-lived argon isotopes

    Get PDF
    We report on the measurement of optical isotope shifts for 32−40^{32-40}Ar and for 46^{46}Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of ÎČ\beta-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z ≈\approx 20). Contrary to all major neutron shell closures with N ≄\geq 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of 33^{33}Ar (I=1/2) and 39^{39}Ar (I=7/2), and the quadrupole moments of 35^{35}Ar, 37^{37}Ar (I=3/2) and 39^{39}Ar. The electromagnetic moments are compared to shell-model predictions for the sd- and fp-shell. Even far from stability a very good agreement between experiment and theory is found for these quantities. The mean square charge radii are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations
    • 

    corecore