28 research outputs found

    Enhancing students’ motivation to learn software engineering programming techniques: a collaborative and social interaction approach

    Get PDF
    To motivate students to study advanced programming techniques, including the use of architectural styles such as the model–view–controller pattern, we have con-ducted action research upon a project based-learning approach. In addition to collabo-ration, the approach includes students’ searching and analysis of scientific documents and their involvement in communities of practice outside academia. In this paper, we report the findings of second action research cycle, which took place throughout the fourth semester of a six-semester program. As with the previous cycle during the pre-vious academic year, students did not satisfactorily achieve expected learning out-comes. More groups completed the assigned activities, but results continue to reflect poor engagement in the communities of practice and very low performance in other learning tasks. From the collected data we have identified new approaches and recom-mendations for subsequent research.Fundação para a Ciência e Tecnologia (FCT), Portugal, for Ph.D. Grants SFRH/BD/91309/2012 and SFRH/BD/87815/201

    A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firms´ sustainable orientation

    Full text link
    This paper examines key aspects in the innovative behavior of the construction firms that determine their environmental orientation while innovating. Structural equation modeling was used and data of 222 firms retrieved from the Spanish Technological Innovation Panel (PITEC) for 2010 to analyse the drivers of environmental orientation of the construction firms during the innovation process. The results show that the environmental orientation is positively affected by the product and process orientation of construction firms during the innovation process. Furthermore, the positive relation between the importance of market information sources and environmental orientation, mediated by process and product orientation, is discussed. Finally, a model that explains these relations is proposed and validated. Results have important managerial implications for those companies worried about their eco-innovative focus as the types of actions and relations within firms most suitable for improving their eco-innovative orientation are highlighted.The authors would like to thank the Spanish Economy and Competitiveness Ministry for its support through the research project (EC02011-27369) and also the Universitat Politecnica de Valencia (SP20140647).Segarra Oña, MDV.; Peiró Signes, A.; Cervelló Royo, RE. (2015). A framework to move forward on the path to eco-innovation in the construction industry: implications to improve firms´ sustainable orientation. Science and Engineering Ethics. 21(6):1469-1484. https://doi.org/10.1007/s11948-014-9620-2S14691484216Amara, N., & Landry, R. (2005). Sources of information as determinants of novelty of innovation in manufacturing firms: evidence from the 1999 statistics Canada innovation survey. Technovation, 25(3), 245–259.Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two- step approach. Psychological Bulletin, 103(3), 411–423.Ang, G. K. I. (2004). Competing revaluing construction paradigms in practice. Rotterdam: CIB.Audet, R., & Guyonnaud, M. F. (2013). Transition in practice and action in research. A French case study in piloting eco-innovations. Innovation: The European Journal of Social Science Research, 26(4), 398–415.Bagozzi, R., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 18(1), 74–94.Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least square (PLS) approach to causal modelling: Personal computer adoption and use as an illustration. Technology Studies, Special Issue on Research Methodology, 2(2), 285–309.Barrett, P. (2007). Revaluing construction: A holistic model. Building Research and Information, 35(3), 268–286.Barrett, P., & Lee, A. (2005). Revaluing construction: A CIB priority theme, Salford Centre for Research and Innovation. Salford/CIB: University of Salford, Rotterdam.Beamon, B. M. (2005). Environmental and sustainability ethics in supply chain management. Science and Engineering Ethics, 11(2), 221–234.Burciu, A., Bostan, I., Condrea, P., & Grosu, V. (2010). Financing the environmental policies in the communitarian space. Environmental Engineering and Management Journal, 9(9), 1179–1185.Carrascosa-López, C., Peiró-Signes, Á., & Segura-García-del-Río, B. (2012). Does it pay to be greener than legislation? An empirical study of spanish tile industry. Journal of Sustainable Development, 5(5), 17–26.Carter, T., & Fowler, L. (2008). Establishing green roof infrastructure through environmental policy instruments. Environmental Management, 42(1), 151–164.Cervelló-Royo, R., Garrido-Yserte, R., & Segura-García del Río, B. (2012). An urban regeneration model in heritage areas in search of sustainable urban development and internal cohesion. Journal of Cultural Heritage Management and Sustainable Development, 2(1), 44–61.Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). New Jersey: Lawrence Erlbaum Associates.Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modelling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic mail emotion/adoption study. Information Systems Research, 14(2), 189–217.Commission, European. (2004). Facing the challenge: The Lisbon strategy for growth and employment Brussels. Brussels: European Comission.Commission of the European Communities (2006). Action Plan for Energy Efficiency: Realising the Potential, Brussels. http://ec.europa.eu/energy/action_plan_energy_efficiency/doc/com_2006_0545_en.pdf . (Accessed 31/01/2014).Courtney, R., & Winch, G. (2002). CIB strategy for re-engineering construction. Rotterdam: CIB.Courtney, R., & Winch, G. M. (2003). Re-engineering construction: The role of research and implementation. Building Research and Information, 31(2), 172–178.Davis, M. (2001). The professional approach to engineering ethics: Five research questions. Science and Engineering Ethics, 7, 379–390.Ding, G. K. C. (2008). Sustainable construction. The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451–464.Du Plessis, C., & Cole, R. J. (2011). Motivating change: Shifting the paradigm. Building Research and Information, 39(5), 436–449.Esty, D. C., & Winston, A. S. (2006). Green to gold, how smart companies use environmental strategy to innovate, create value, and build competitive advantage. Hoboken: Wiley.European Commission (2010) Europe 2020: A strategy for smart, sustainable and inclusive growth, Brussels.Falk, R., & Miller, N. (1992). A primer on soft modelling. Akron: The University of Akron Press.Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 328–388.Freeman, R. E. (1994). The politics of stakeholder theory: Some future directions. Business Ethics Quarterly, 4(4), 409–422.Gázquez-Abad, J. C., Huertas-García, R., Vázquez-Gómez, M. D., & Romeo, A. C. (2014). Drivers of sustainability strategies in Spain’s wine tourism industry. Cornell Hospitality Quarterly, 1938965514549657.Gebauer, H., Gustafsson, A., & Witell, L. (2011). Competitive advantage through service differentiation by manufacturing companies. Journal of Business Research, 64(12), 1270–1280.Geisser, S. (1975). A predictive approach to the random effect model. Biometrika, 61(1), 101–107.González-Benito, O., & González-Benito, J. (2008). Implications of market orientation on the environmental transformation of industrial firms. Ecological Economics, 64(4), 752–762.Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least square path modelling in international marketing. In I. Rudolf, R. Sinkovics & N. Pervez (Eds.), Advance in international marketing (Vol. 20, pp. 277–319).Hill, S., & Lorenz, D. (2011). Rethinking professionalism: Guardianship of land and resources. Building Research and Information, 39(3), 314–319.Huedo, P., & Lopez-Mesa, B. (2013). Review of tools to assist in the selection of sustainable building assemblies. Informes de la Construcción, 65(529), 77–88.IPCC. (2007a). Climate change 2007: The physical science basis. summary for policymakers: Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.IPCC. (2007b). Mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: IPCC.Jensen, J. S., Gottlieb, S. C., & Thuese, C. L. (2011). Construction sector development: Frames and governance responses. Building Research and Information, 39(6), 665–667.Kibert, Ch J. (2007). The next generation of sustainable construction. Building Research & Information, 35(6), 595–601.Kim, Y., Brodhag, C., & Mebratu, D. (2014). Corporate social responsibility driven innovation. Innovation: The European Journal of Social Science Research, 27(2), 175–196.Kuhn, S. (2001). Commentary on: The greening of engineers: A cross-cultural experience. Science and Engineering Ethics, 7(1), 123–124.Lam, P. T., Chan, E. H., Chau, C. K., Poon, C. S., & Chun, K. P. (2011). Environmental management system vs green specifications: How do they complement each other in the construction industry? Journal of Environmental Management, 92(3), 788–795.Leimeister, S., Leimeister, J. M., & Knebel, U. (2009). A cross-national comparison of perceived strategic importance of RFID for CIOs in Germany and Italy. International Journal of Information Management, 29(1), 37–47.Leman, A., & Bordass, B. (2007). Are users more tolerant of green buildings? Building Research and Information, 35(6), 662–673.Liefferink, D., & Andersen, M. S. (1998). Strategies of the green member states in EU environmental policy-making. Journal of European Public Policy, 5(2), 254–270.Losada, B. (2013). Smart cities through the smart grid: The sustainable smart city and its energy dependence. DYNA, 88(2), 154–155.Luetzkendorf, T. (2010). Sustainable properties-dream or trend? Informes de la Construcción, 61(517), 5–15.Lützkendorf, T., & Lorenz, D. (2007). Integrating sustainability into property risk assessments for market transformation. Building Research and Information, 35(6), 644–671.Matthyssensa, P., & Vandenbempt, K. (2008). Moving from basic offerings to value-added solutions: Strategies, barriers and alignment. Industrial Marketing Management, 37(3), 316–328.McKeiver, C., & Gadenne, D. (2005). Environmental management systems in small and medium business. Small Business Journal, 23(5), 513–537.Nunnally, J. C., & Bernstein, I. H. (1995). Teoría psicométrica. México: McGraw-Hill.Parsa, H. G., Segarra-Oña, M., Jang, S. S., Chen, R., & Singh, A. J. (2014). Special issue on sustainable and eco-innovative practices in hospitality and tourism. Cornell Hospitality Quarterly, 55(1), 5–5.Pearce, D. (2006). Is the construction sector sustainable? Building Research and Information, 34(3), 201–207.Peiró-Signes, A., Miret-Pastor, L. L., Segarra-Oña, M. V., & De Miguel Molina, B. (2013). Analysing the determinants of better performance through eco management tools at the food industry: An empirical study. In P. Golinska (Ed.), Eco Production and logistics (pp. 73–90). Heidelberg: Springer.Peiró-Signes, A., Verma, R., Mondéjar-Jiménez, J., & Vargas-Vargas, M. (2014). The impact of environmental certification on hotel guest ratings. Cornell Hospitality Quarterly, 55(1), 40–51.Petruzzelli, A. M., Dangelico, R. M., Rotolo, D., & Albino, V. (2011). Organizational factors and technological features in the development of green innovations: Evidence from patent analysis. Innovation: Management, Policy and Practice, 13(3), 291–310.Porter, M. E., & Kramer, M. R. (2006). Strategy and society: The link between competitive advantage and corporate social responsibility. Harvard Business Review, 84(12), 78–92.Porter, M. E., & Van der Linde, C. (1995). Toward a new conception of the environment competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118.Rennings, K. (2002). Redefining innovation—Eco-innovation research and the contribution from ecological economics. Ecological Economics, 32(2), 319–332.Rennings, K., Ziegler, A., Ankele, K., & Hoffman, E. (2006). The influence of different characteristics of the eu environmental management and auditing scheme on technical environmental innovations and economic performance. Ecological Economics, 57(1), 45–59.Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 M3. http:// www.smartpls.de .Sánchez-Ollero, J. L., García-Pozo, A., & Marchante-Mera, A. (2013). How does respect for the environment affect final prices in the hospitality sector? A hedonic pricing approach. Cornell Hospitality Quarterly, 55, 31–39.Schmidt, V. A., & Radaelli, C. M. (2004). Policy change and discourse in Europe: Conceptual and methodological issues. West European Politics, 27(2), 183–210.Segarra-Oña, M.D.V., M.Peiró-Signes, Á., Verma, R., & Miret-Pastor, L. (2012). Does environmental certification help the economic performance of hotels? Evidence from the spanish hotel industry. Cornell Hospitality Quarterly, 1938965512446417.Segarra-Oña, M. V., Peiró-Signes, A., Albors-Garrigós, J., & Miret-Pastor, P. (2011). Impact of innovative practices in environmentally focused firms: Moderating factors. International Journal of Environmental Research, 5(2), 425–434.Segarra-Oña, M. D. V., Peiró-Signes, A., & Mondéjar-Jiménez, J. (2013). Identifying variables affecting the proactive environmental orientation of firms: An empirical study. Polish Journal of Environmental Studies, 22(3), 873–880.Sharma, A., Thomas, D., & Konsynski, B. (2008). Strategic and institutional perspectives in the evaluation, adoption and early integration of radio frequency identification (RFID): An empirical investigation of current and potential adopters. Proceedings of the 41st Hawaii international conference on system science, Waikoloa, Big Island, Hawaii, USA (pp 407–420).Sigala, M. (2014). Customer involvement in sustainable supply chain management a research framework and implications in tourism. Cornell Hospitality Quarterly, 55(1), 76–88.Song, M., Peng, J., Liu, W., & An, Q. (2014). A PSBM model for environmental efficiency evaluation and its application. Polish Journal of Environmental Studies, 23(3), 893–900.Stern, N. (2006). The economics of climate change: The stern review. Cambridge: Cambridge University Press.Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111–147.Stone, G. W., & Wakefield, K. L. (2000). Eco-orientation: An extension of market orientation in an environmental context. Journal of Marketing Theory and Practice, 8(3), 21–31.Tenenhaus, M., Vinzi, V., Chatelin, J., & Lauro, C. (2005). PLS path modeling. Computational Statistics & Data Analysis, 48(1), 159–205.Tse, R. Y. (2001). The implementation of EMS in construction firms: Case study in Hong Kong. Journal of Environmental Assessment Policy and Management, 3(2), 177–194.Turner, R. K. (2006). Sustainability auditing and assessment challenges. Building Research and Information, 34(3), 197–200.Van Bueren, E., & De Jong, J. J. (2007). Establishing sustainability: Policy successes and failures. Building Research and Information, 35(5), 543–556.Vanasupa, L., Chen, K. C., & Slivovsky, L. (2006). Global challenges as inspiration: A classroom strategy to foster social responsibility. Science and Engineering Ethics, 12(2), 373–380.Vastag, G., Kerekes, S., & Rondinelli, D. A. (1996). Evaluation of corporate environmental management approaches: A framework and application. International Journal of Production Economics, 43(2–3), 193–211

    Whey Protein Edible Film Structures Determined by Atomic Force Microscope

    Get PDF
    Atomic force microscopy was used to study edible films produced from whey proteins. The films were imaged under ambient conditions with no special sample preparation. Low resolution imaging of areas from 10 μm to 150 μm on a side was performed in the contact mode. Higher resolution scans of 350 nm to 2,700 nm required use of the noncontact imaging mode. Features about the same size as the primary protein in whey, beta-lactoglobulin (7 nm), were identified in the film samples. Molecular aggregates in the range of 1 μm, reported in other studies using transmission electron microscopy of whey protein gels, were combined in results from atomic force microscopy

    Converting Traditional Materials Labs to Project-based Learning Experiences: Aiding Students\u27 Development of Higher-order Cognitive Skills

    Get PDF
    Against a backdrop of compelling societal needs, graduates in science and engineering now must master their disciplines and demonstrate a sophisticated level of cognitive, affective and social development. This has lead a number of national and international commissions on science and engineering to urge educators to re-think the way in which STEM disciplines are taught. We have chosen to repackage a traditional undergraduate materials engineering curriculum in a form designed to promote the development of higher-order cognitive skills like self-directed learning and design. Classic metallurgy experiments have been converted to project-based learning experiences where students are put in the role of designers of problem solutions and faculty play the role of coaches. These include: designing, prototyping and marketing of a cast metal object; systems designing, building and testing of a fiber optic spectrometer; product improvement of a prosthetic device; evaluation of oxidation process for production; design and evaluation of a heat treatment process for roller bearings; and materials characterization of an everyday product. Projects were designed to leverage known relationships within the educational psychology literature that enable deeper learning. Evaluation of 36 juniors in a project-based learning course (i.e., the test cohort) against a quasi-control group in traditional engineering courses showed that the test cohort scored significantly higher on two motivation scales shown to be critical components in self-directed learning (p\u3c0.001). The test cohort also reported a significantly higher use of peers as learning resources than the quasi-control group. Their motivation scores also correlate highly with self-reported comfort with several aspects of design, implying that their motivation contributes significantly to students\u27 ability to effectively engage in the design process. In this paper, we present examples of the materials engineering projects that were designed and implemented, and the design features that enable them to promote the development of sophisticated cognitive functioning

    Microelectronics Process Engineering: A Non-Traditional Approach to MS&E (Ingeniería de Procesos Microelectrónicos: Un Acercamiento no Tradicional a la Ciencia de Materiales e Ingeniería)

    No full text
    Materials Science and Engineering straddles the fence between engineering and science. In order to produce more work-ready undergraduates, we offer a new interdisciplinary program to educate materials engineers with a particular emphasis on microelectronics-related manufacturing. The bachelor\u27s level curriculum in Microelectronics Process Engineering (J1ProE) is interdisciplinary, drawing from materials, chemical, electrical and industrial engineering programs and tied together with courses, internships and projects which integrate thin film processing with manufacturing control methods. Our graduates are prepared for entry level engineering jobs that require knowledge and experience in microelectronics-type fabrication and statistics applications in manufacturing engineering. They also go on to graduate programs in materials science and engineering. The program objectives were defined using extensive input from industry and alumni. We market our program as part of workforce development for Silicon Valley and have won significant support from local industry as well as federal sources. We plan to offer a vertical slice of workforce development, from lower division engineering and community college activities to industry short courses. We also encourage all engineering majors to take electives in our program. All our course and program development efforts rely on clearly defined learning objectives
    corecore