253 research outputs found

    Na I and Hα\alpha absorption features in the atmosphere of MASCARA-2b/KELT-20b

    Get PDF
    We have used the HARPS-North high resolution spectrograph (R\mathcal{R}=115 000) at TNG to observe one transit of the highly irradiated planet MASCARA-2b/KELT-20b. Using only one transit observation, we are able to clearly resolve the spectral features of the atomic sodium (Na I) doublet and the Hα\alpha line in its atmosphere, measuring absorption depths of 0.17±\pm0.03%\% and 0.59±\pm0.08%\% for a 0.75 A˚\AA passband, respectively. These absorptions are corroborated with the transmission measured from their respective transmission light curves, which show a large Rossiter-McLaughlin effect. In case of Hα\alpha, this absorption corresponds to an effective radius of Rλ/RPR_{\lambda}/R_P=1.20±\pm0.04. While the S/N of the final transmission spectrum is not sufficient to adjust different temperature profiles to the lines, we find that higher temperatures than the equilibrium are needed to explain the lines contrast. Particularly, we find that the Na I lines core require a temperature of T=4210±\pm180K and that Hα\alpha requires T=4330±\pm520K. MASCARA-2b, like other planets orbiting A-type stars, receives a large amount of UV energy from its host star. This energy excites the atomic hydrogen and produces Hα\alpha absorption, leading to the expansion and abrasion of the atmosphere. The study of other Balmer lines in the transmission spectrum would allow the determination of the atmospheric temperature profile and the calculation of the lifetime of the atmosphere. In the case of MASCARA-2b, residual features are observed in the Hβ\beta and Hγ\gamma lines, but they are not statistically significant. More transit observations are needed to confirm our findings in Na I and Hα\alpha, and to build up enough S/N to explore the presence of Hβ\beta and Hγ\gamma planetary absorptions.Comment: 14 pages, 12 figure

    What asteroseismology can do for exoplanets

    Full text link
    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.Comment: 4 pages, Proceedings of the CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, 7-11 July 2014. To be published by EPJ Web of Conference

    MASCARA-2 b: A hot Jupiter transiting the mV=7.6m_V=7.6 A-star HD185603

    Get PDF
    In this paper we present MASCARA-2 b, a hot Jupiter transiting the mV=7.6m_V=7.6 A2 star HD 185603. Since early 2015, MASCARA has taken more than 1.6 million flux measurements of the star, corresponding to a total of almost 3000 hours of observations, revealing a periodic dimming in the flux with a depth of 1.3%1.3\%. Photometric follow-up observations were performed with the NITES and IAC80 telescopes and spectroscopic measurements were obtained with the Hertzsprung SONG telescope. We find MASCARA-2 b orbits HD 185603 with a period of 3.474119−0.000006+0.000005 days3.474119^{+0.000005}_{-0.000006}~\rm{days} at a distance of 0.057±0.006 AU0.057 \pm 0.006~\rm{AU}, has a radius of 1.83±0.07 RJ1.83 \pm 0.07~\rm{R}_{\rm{J}} and place a 99%99\% upper limit on the mass of <17 MJ< 17~\rm{M}_{\rm{J}}. HD 185603 is a rapidly rotating early-type star with an effective temperature of 8980−130+90 K8980^{+90}_{-130}~\rm{K} and a mass and radius of 1.89−0.05+0.06 M⊙1.89^{+0.06}_{-0.05}~M_\odot, 1.60±0.06 R⊙1.60 \pm 0.06~R_\odot, respectively. Contrary to most other hot Jupiters transiting early-type stars, the projected planet orbital axis and stellar spin axis are found to be aligned with λ=0.6±4∘\lambda=0.6 \pm 4^\circ. The brightness of the host star and the high equilibrium temperature, 2260±50 K2260 \pm 50~\rm{K}, of MASCARA-2 b make it a suitable target for atmospheric studies from the ground and space. Of particular interest is the detection of TiO, which has recently been detected in the similarly hot planets WASP-33 b and WASP-19 b.Comment: 8 pages, 4 figures, Accepted for publication in A&

    The K2-ESPRINT Project VI: K2-105 b, a Hot-Neptune around a Metal-rich G-dwarf

    Get PDF
    We report on the confirmation that the candidate transits observed for the star EPIC 211525389 are due to a short-period Neptune-sized planet. The host star, located in K2 campaign field 5, is a metal-rich ([Fe/H] = 0.26±\pm0.05) G-dwarf (T_eff = 5430±\pm70 K and log g = 4.48±\pm0.09), based on observations with the High Dispersion Spectrograph (HDS) on the Subaru 8.2m telescope. High-spatial resolution AO imaging with HiCIAO on the Subaru telescope excludes faint companions near the host star, and the false positive probability of this target is found to be <10−610^{-6} using the open source vespa code. A joint analysis of transit light curves from K2 and additional ground-based multi-color transit photometry with MuSCAT on the Okayama 1.88m telescope gives the orbital period of P = 8.266902±\pm0.000070 days and consistent transit depths of Rp/R⋆∼0.035R_p/R_\star \sim 0.035 or (Rp/R⋆)2∼0.0012(R_p/R_\star)^2 \sim 0.0012. The transit depth corresponds to a planetary radius of Rp=3.59−0.39+0.44R⊕R_p = 3.59_{-0.39}^{+0.44} R_{\oplus}, indicating that EPIC 211525389 b is a short-period Neptune-sized planet. Radial velocities of the host star, obtained with the Subaru HDS, lead to a 3\sigma\ upper limit of 90 M⊕(0.00027M⊙)M_{\oplus} (0.00027 M_{\odot}) on the mass of EPIC 211525389 b, confirming its planetary nature. We expect this planet, newly named K2-105 b, to be the subject of future studies to characterize its mass, atmosphere, spin-orbit (mis)alignment, as well as investigate the possibility of additional planets in the system.Comment: 11 pages, 9 figures, 4 tables, PASJ accepte

    Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology

    Full text link
    We present a study of 33 {\it Kepler} planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2\% (radius), 1.7\% (density), 3.3\% (mass), 4.4\% (distance), and 14\% (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1\% in density and radius, and 2\% and 7\% in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding an excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic {\it Kepler} host stars are older than the Sun.Comment: 25 pages, 17 figures, MNRAS accepte

    The K2-ESPRINT Project. I. Discovery of the Disintegrating Rocky Planet K2-22b with a Cometary Head and Leading Tail

    Get PDF
    We present the discovery of a transiting exoplanet candidate in the K2 Field-1 with an orbital period of 9.1457 hr: K2-22b. The highly variable transit depths, ranging from ∼\sim0\% to 1.3\%, are suggestive of a planet that is disintegrating via the emission of dusty effluents. We characterize the host star as an M-dwarf with Teff≃3800T_{\rm eff} \simeq 3800 K. We have obtained ground-based transit measurements with several 1-m class telescopes and with the GTC. These observations (1) improve the transit ephemeris; (2) confirm the variable nature of the transit depths; (3) indicate variations in the transit shapes; and (4) demonstrate clearly that at least on one occasion the transit depths were significantly wavelength dependent. The latter three effects tend to indicate extinction of starlight by dust rather than by any combination of solid bodies. The K2 observations yield a folded light curve with lower time resolution but with substantially better statistical precision compared with the ground-based observations. We detect a significant "bump" just after the transit egress, and a less significant bump just prior to transit ingress. We interpret these bumps in the context of a planet that is not only likely streaming a dust tail behind it, but also has a more prominent leading dust trail that precedes it. This effect is modeled in terms of dust grains that can escape to beyond the planet's Hill sphere and effectively undergo `Roche lobe overflow,' even though the planet's surface is likely underfilling its Roche lobe by a factor of 2.Comment: 22 pages, 16 figures. Final version accepted to Ap

    Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)

    Get PDF
    \We present the sixth catalog of Kepler candidate planets based on nearly 4 years of high precision photometry. This catalog builds on the legacy of previous catalogs released by the Kepler project and includes 1493 new Kepler Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these candidates have best fit radii <1.5 R_earth. This brings the total number of KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many of these new candidates at the low signal-to-noise limit may be false alarms created by instrumental noise, and discuss our efforts to identify such objects. We re-evaluate all previously published KOIs with orbital periods of >50 days to provide a consistently vetted sample that can be used to improve planet occurrence rate calculations. We discuss the performance of our planet detection algorithms, and the consistency of our vetting products. The full catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement Serie

    The low density, hot Jupiter TOI-640 b is on a polar orbit

    Full text link
    TOI-640 b is a hot, puffy Jupiter with a mass of 0.57±0.020.57 \pm 0.02 MJ_{\rm J} and radius of 1.72±0.051.72 \pm 0.05 RJ_{\rm J}, orbiting a slightly evolved F-type star with a separation of 6.33−0.06+0.076.33^{+0.07}_{-0.06} R⋆_\star. Through spectroscopic in-transit observations made with the HARPS spectrograph, we measured the Rossiter-McLaughlin effect, analysing both in-transit radial velocities and the distortion of the stellar spectral lines. From these observations, we find the host star to have a projected obliquity of λ=184±3∘\lambda=184\pm3^\circ. From the TESS light curve, we measured the stellar rotation period, allowing us to determine the stellar inclination, i⋆=23−2+3∘i_\star=23^{+3\circ}_{-2}, meaning we are viewing the star pole-on. Combining this with the orbital inclination allowed us to calculate the host star obliquity, ψ=104±2∘\psi=104\pm2^\circ. TOI-640 b joins a group of planets orbiting over stellar poles within the range 80∘−125∘80^\circ-125^\circ. The origin of this orbital configuration is not well understood.Comment: 15 pages, 12 figures, accepted for publication in A&A, in pres

    Confronting compositional confusion through the characterisation of the sub-Neptune orbiting HD 77946

    Get PDF
    We report on the detailed characterization of the HD 77946 planetary system. HD 77946 is an F5 (M∗M_* = 1.17 M⊙_{\odot}, R∗R_* = 1.31 R⊙_{\odot}) star, which hosts a transiting planet recently discovered by NASA's Transiting Exoplanet Survey Satellite (TESS), classified as TOI-1778 b. Using TESS photometry, high-resolution spectroscopic data from HARPS-N, and photometry from CHEOPS, we measure the radius and mass from the transit and RV observations, and find that the planet, HD 77946 b, orbits with period PbP_{\rm b} = 6.527282−0.000020+0.0000156.527282_{-0.000020}^{+0.000015} d, has a mass of Mb=8.38±1.32M_{\rm b} = 8.38\pm{1.32}M⊕_\oplus, and a radius of Rb=2.705−0.081+0.086R_{\rm b} = 2.705_{-0.081}^{+0.086}R⊕_\oplus. From the combination of mass and radius measurements, and the stellar chemical composition, the planet properties suggest that HD 77946 b is a sub-Neptune with a ∼\sim1\% H/He atmosphere. However, a degeneracy still exists between water-world and silicate/iron-hydrogen models, and even though interior structure modelling of this planet favours a sub-Neptune with a H/He layer that makes up a significant fraction of its radius, a water-world composition cannot be ruled out, as with Teq=1248−38+40 T_{\rm eq} = 1248^{+40}_{-38}~K, water may be in a supercritical state. The characterisation of HD 77946 b, adding to the small sample of well-characterised sub-Neptunes, is an important step forwards on our journey to understanding planetary formation and evolution pathways. Furthermore, HD 77946 b has one of the highest transmission spectroscopic metrics for small planets orbiting hot stars, thus transmission spectroscopy of this key planet could prove vital for constraining the compositional confusion that currently surrounds small exoplanets
    • …
    corecore