12,097 research outputs found

    Chandra and HST Confirmation of the Luminous and Variable X-ray Source IC 10 X-1 as a Possible Wolf-Rayet, Black-Hole Binary

    Full text link
    We present a Chandra and HST study of IC 10 X-1, the most luminous X-ray binary in the closest starburst galaxy to the Milky Way. Our new hard X-ray observation of X-1 confirms that it has an average 0.5-10 keV luminosity of 1.5e38 erg/s, is strongly variable (a factor of ~2 in >3 ks), and is spatially coincident (within 0.'23 +/-0.'30) with the Wolf-Rayet (WR) star [MAC92] 17A in IC 10. The spectrum of X-1 is best fit by a power law with photon index of ~1.8 and a thermal plasma with kT~1.5 keV, although systematic residuals hint at further complexity. Taken together, these facts suggest that X-1 may be a black hole belonging to the rare class of WR binaries; it is comparable in many ways to Cyg X-3. The Chandra observation also finds evidence for extended X-ray emission co-spatial with the large non-thermal radio superbubble surrounding X-1.Comment: ApJL in press (Oct 2003), 4 pages, 4 figures (w/ fig1 at severely reduced quality), latest emulateapj.cls use

    Small-scale swirl events in the quiet Sun chromosphere

    Full text link
    Recent progress in instrumentation enables solar observations with high resolution simultaneously in the spatial, temporal, and spectral domains. We use such high-resolution observations to study small-scale structures and dynamics in the chromosphere of the quiet Sun. We analyze time series of spectral scans through the Ca II 854.2nm spectral line obtained with the CRISP instrument at the Swedish 1-m Solar Telescope. The targets are quiet Sun regions inside coronal holes close to disc-centre. The line core maps exhibit relatively few fibrils compared to what is normally observed in quiet Sun regions outside coronal holes. The time series show a chaotic and dynamic scene that includes spatially confined "swirl" events. These events feature dark and bright rotating patches, which can consist of arcs, spiral arms, rings or ring fragments. The width of the fragments typically appears to be on the order of only 0.2", which is close to the effective spatial resolution. They exhibit Doppler shifts of -2 to -4 km/s but sometimes up to -7 km/s, indicating fast upflows. The diameter of a swirl is usually of the order of 2". At the location of these swirls, the line wing and wide-band maps show close groups of photospheric bright points that move with respect to each other. A likely explanation is that the relative motion of the bright points twists the associated magnetic field in the chromosphere above. Plasma or propagating waves may then spiral upwards guided by the magnetic flux structure, thereby producing the observed intensity signature of Doppler-shifted ring fragments.Comment: 4 pages, 3 figures, A&A Letter, accepted (final version

    Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model

    Full text link
    The simplest statistical-mechanical model of crystalline formation (or alloy formation) that includes electronic degrees of freedom is solved exactly in the limit of large spatial dimensions and infinite interaction strength. The solutions contain both second-order phase transitions and first-order phase transitions (that involve phase-separation or segregation) which are likely to illustrate the basic physics behind the static charge-stripe ordering in cuprate systems. In addition, we find the spinodal-decomposition temperature satisfies an approximate scaling law.Comment: 19 pages and 10 figure

    N=2 SYM Action as a BRST Exact Term, Topological Yang Mills and Instantons

    Full text link
    By constructing a nilpotent extended BRST operator \bs that involves the N=2 global supersymmetry transformations of one chirality, we show that the standard N=2 off-shell Super Yang Mills Action can be represented as an exact BRST term \bs \Psi, if the gauge fermion Ψ\Psi is allowed to depend on the inverse powers of supersymmetry ghosts. By using this nonanalytical structure of the gauge fermion (via inverse powers of supersymmetry ghosts), we give field redefinitions in terms of composite fields of supersymmetry ghosts and N=2 fields and we show that Witten's topological Yang Mills theory can be obtained from the ordinary Euclidean N=2 Super Yang Mills theory directly by using such field redefinitions. In other words, TYM theory is obtained as a change of variables (without twisting). As a consequence it is found that physical and topological interpretations of N=2 SYM are intertwined together due to the requirement of analyticity of global SUSY ghosts. Moreover, when after an instanton inspired truncation of the model is used, we show that the given field redefinitions yield the Baulieu-Singer formulation of Topological Yang Mills.Comment: Latex, 1+15 pages. Published versio

    Classical transport equation in non-commutative QED at high temperature

    Full text link
    We show that the high temperature behavior of non-commutative QED may be simply obtained from Boltzmann transport equations for classical particles. The transport equation for the charge neutral particle is shown to be characteristically different from that for the charged particle. These equations correctly generate, for arbitrary values of the non-commutative parameter theta, the leading, gauge independent hard thermal loops, arising from the fermion and the gauge sectors. We briefly discuss the generating functional of hard thermal amplitudes.Comment: 11 page

    Long-range nonlocal flow of vortices in narrow superconducting channels

    Get PDF
    We report a new nonlocal effect in vortex matter, where an electric current confined to a small region of a long and sufficiently narrow superconducting wire causes vortex flow at distances hundreds of inter-vortex separations away. The observed remote traffic of vortices is attributed to a very efficient transfer of a local strain through the one-dimensional vortex lattice, even in the presence of disorder. We also observe mesoscopic fluctuations in the nonlocal vortex flow, which arise due to "traffic jams" when vortex arrangements do not match a local geometry of a superconducting channel.Comment: a slightly longer version of a tentatively accepted PR

    Response of thin-film SQUIDs to applied fields and vortex fields: Linear SQUIDs

    Full text link
    In this paper we analyze the properties of a dc SQUID when the London penetration depth \lambda is larger than the superconducting film thickness d. We present equations that govern the static behavior for arbitrary values of \Lambda = \lambda^2/d relative to the linear dimensions of the SQUID. The SQUID's critical current I_c depends upon the effective flux \Phi, the magnetic flux through a contour surrounding the central hole plus a term proportional to the line integral of the current density around this contour. While it is well known that the SQUID inductance depends upon \Lambda, we show here that the focusing of magnetic flux from applied fields and vortex-generated fields into the central hole of the SQUID also depends upon \Lambda. We apply this formalism to the simplest case of a linear SQUID of width 2w, consisting of a coplanar pair of long superconducting strips of separation 2a, connected by two small Josephson junctions to a superconducting current-input lead at one end and by a superconducting lead at the other end. The central region of this SQUID shares many properties with a superconducting coplanar stripline. We calculate magnetic-field and current-density profiles, the inductance (including both geometric and kinetic inductances), magnetic moments, and the effective area as a function of \Lambda/w and a/w.Comment: 18 pages, 20 figures, revised for Phys. Rev. B, the main revisions being to denote the effective flux by \Phi rather than

    Charge-transfer metal-insulator transitions in the spin-one-half Falicov-Kimball model

    Full text link
    The spin-one-half Falicov-Kimball model is solved exactly on an infinite-coordination-number Bethe lattice in the thermodynamic limit. This model is a paradigm for a charge-transfer metal-insulator transition where the occupancy of localized and delocalized electronic orbitals rapidly changes at the metal-insulator transition (rather than the character of the electronic states changing from insulating to metallic as in a Mott-Hubbard transition). The exact solution displays both continuous and discontinuous (first-order) transitions.Comment: 22 pages including 4 figures(eps), RevTe

    Direct perturbation theory on the shift of Electron Spin Resonance

    Full text link
    We formulate a direct and systematic perturbation theory on the shift of the main paramagnetic peak in Electron Spin Resonance, and derive a general expression up to second order. It is applied to one-dimensional XXZ and transverse Ising models in the high field limit, to obtain explicit results including the polarization dependence for arbitrary temperature.Comment: 5 pages (no figures) in REVTE
    • …
    corecore