94 research outputs found

    Delta-Isobar Production in Antiproton Annihilation on the Deuteron

    Get PDF
    The annihilation of antiprotons on deuterons at rest are investigated for the case when pion-nucleon and pion-delta-isobar pairs are produced. The two-step mechanism is investigated by analysing these processes when either neutral particles and charged ones are produced. Some predictions for the branching ratios are presented.Comment: 12 pages, Latex, 3 figs., they can be sent separatel

    ISAAC, a framework for integrated safety analysis of functional, geometrical and human aspects

    Get PDF
    International audienceThis paper aims at presenting methods and tools that are developed in the ISAAC project (Improvement of Safety Activities on Aeronautical Complex Systems, www.isaac-fp6.org), a European Community funded project, to support the safety assessment of complex embedded systems. The ISAAC methodology proposes to base as much of the safety analyses as is feasibly possible on simulable and formally verifiable system models that include fault models and can be shared both by safety and design engineers. On one hand, tools were developed to support safety assessment of Simulink, SCADE, Statemate, NuSMV and AltaRica models. On the other hand, formal models are coupled with additional models to address the problems of common cause analysis and human error analysis

    Measurements of the reaction pˉpϕη\bar{p}p \to \phi \eta of antiproton annihilation at rest at three hydrogen target densities

    Full text link
    The proton-antiproton annihilation at rest into the ϕη\phi\eta final state was measured for three different target densities: liquid hydrogen, gaseous hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in the liquid hydrogen target is smaller than in the low-pressure gas target. The branching ratios of the ϕη\phi\eta channel were calculated on the basis of simultaneous analysis of the three data samples. The branching ratio for annihilation into ϕη\phi\eta from the 3S1^3S_1 protonium state turns out to be about ten times smaller as compared to the one from the 1P1^1P_1 state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters

    The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7.

    Get PDF
    Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa

    Study of the f(0)(1500)/f(2)(1565) production in the exclusive annihilation anti-n.anti-p -> pi+.pi+.pi- in flight

    Get PDF
    The spin-parity analysis of the (n) over bar p --> pi(+)pi(+)pi(-) exclusive reaction in flight is presented. The main aim is to study the (pi(+)pi(-)) invariant mass spectrum in the region around 1500 MeV. The analysis was performed with a Breit-Wigner parametrization for all the resonant states and, for the scalar sector in the mass region below 1.2 GeV, by means of a K-matrix-like treatment. It clearly shows the need for two states, a scalar one (0(++)) with mass and width (1522+/-25) MeV and (108+/-33) MeV, and a tensorial one (2(++)) with mass (1575 +/-18) MeV and width (119+/-24) MeV, respectively. In addition, the analysis requires the presence of a scalar state at (1280+/-55) MeV, (323+/-13) MeV broad, and of a second vectorial one, in addition to the rho(0)(770) signal, with mass and width (1348+/-33) MeV and (275+/-10) MeV, respectively

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link

    Improving Safety Assessment of Complex Systems: An Industrial case study

    No full text
    The complexity of embedded controllers is steadily increasing. This trend, stimulated by the continuous improvement of the computational power of hardware, demands for a corresponding increase in the capability of design and safety engineers to maintain adequate safety levels. The use of formal methods during system design has proved to be effective in several practical applications. The development of certain classes of applications, like, for instance, avionic system, however, also requires to analyse the behaviour of a system under certain degraded situations (e.g. when some components are not working as expected). This step, usually performed by safety engineers in a set of dedicated activities, has the goal of pointing out what are all the possible causes of a system malfunction or, more properly, a hazard of the system. It is an essential step to obtain the high safety levels required to keep public confidence in system behaviour, according to the current procedures for system certification (e.g., ARP4754). The integration of system design activities with safety assessment and the use of formal notations for the safety assessment of a system, although not new, are still at an early stage. These goals are addressed by the ESACS project, a European-Union-sponsored project grouping several industrial companies from the aeronautic field. The ESACS project is developing a methodology and a platform - the ESACS platform - that helps safety engineers automating certain phases of their work. An integral part of the project is the evaluation of the methodology and of the platform on a set of industrial case studies. This paper reports on the application of the ESACS methodology and on the use of the ESACS platform to one of such case studies, namely, the Secondary Power System of the Eurofighter Typhoon aircraf
    corecore