56 research outputs found

    Reducing LPS content in cockroach allergens increases pulmonary cytokine production without increasing inflammation: A randomized laboratory study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endotoxins are ubiquitously present in the environment and constitute a significant component of ambient air. These substances have been shown to modulate the allergic response, however a consensus has yet to be reached whether they attenuate or exacerbate asthmatic responses. The current investigation examined whether reducing the concentration of lipopolysaccharide (LPS) in a house dust extract (HDE) containing high concentrations of both cockroach allergens <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> and LPS would attenuate asthma-like pulmonary inflammation.</p> <p>Methods</p> <p>Mice were sensitized with CRA and challenged with the intact HDE, containing 182 ng of LPS, or an LPS-reduced HDE containing 3 ng LPS, but an equivalent amount of CRA. Multiple parameters of asthma-like pulmonary inflammation were measured.</p> <p>Results</p> <p>Compared to HDE challenged mice, the LPS-reduced HDE challenged mice had significantly reduced TNFα levels in the bronchoalveolar lavage fluid. Plasma levels of IgE and IgG1 were significantly reduced, however no change in CRA-specific IgE was detected. In HDE mice, plasma IgG2a levels were similar to naïve mice, while LPS-reduced HDE mice had significantly greater concentrations. Reduced levels of LPS in the HDE did not decrease eosinophil or neutrophil recruitment into the alveolar space. Equivalent inflammatory cell recruitment occurred despite having generally higher pulmonary concentrations of eotaxins and CXC chemokines in the LPS-reduced HDE group. LPS-reduced HDE challenge induced significantly higher concentrations of IFNγ, and IL-5 and IL-13 in the BAL fluid, but did not decrease airways hyperresponsiveness or airway resistance to methacholine challenge. <it>Conclusion: </it>These data show that reduction of LPS levels in the HDE does not significantly protect against the severity of asthma-like pulmonary inflammation.</p

    Role of SNX16 in the Dynamics of Tubulo-Cisternal Membrane Domains of Late Endosomes

    Get PDF
    In this paper, we report that the PX domain-containing protein SNX16, a member of the sorting nexin family, is associated with late endosome membranes. We find that SNX16 is selectively enriched on tubulo-cisternal elements of this membrane system, whose highly dynamic properties and formation depend on intact microtubules. By contrast, SNX16 was not found on vacuolar elements that typically contain LBPA, and thus presumably correspond to multivesicular endosomes. We conclude that SNX16, together with its partner phosphoinositide, define a highly dynamic subset of late endosomal membranes, supporting the notion that late endosomes are organized in distinct morphological and functional regions. Our data also indicate that SNX16 is involved in tubule formation and cholesterol transport as well as trafficking of the tetraspanin CD81, suggesting that the protein plays a role in the regulation of late endosome membrane dynamics

    Antiproliferative monoclonal antibodies: detection and initial characterization.

    Full text link
    Abstract Two monoclonal antibodies (MAB) are described which inhibit in vitro cellular proliferation in the absence of complement or effector cells. These MAB were produced by hybridomas made from mice immunized against human B lymphoma cells. The MAB were detected by using a colorimetric assay that quantifies proliferation based on the conversion of a yellow tetrazolium salt to a purple formazan product, a reaction that occurs only in metabolically active cells with intact mitochondrial enzymes. A human B lymphoblastoid cell was used as the screening target. RBC4 is an IgM MAB that modulates and immunoprecipitates the transferrin receptor. RBG5 is an IgG1 that binds to a nonmodulating cell surface determinant different from the transferrin receptor. Both MAB are active at low concentrations (RBC4, 0.5 microgram/ml and RBG5, 0.01 microgram/ml). Immunofluorescence staining of cell lines by RBC4 and RBG5 shows little correlation with inhibition by the antibodies. They differentially inhibit the proliferation of a panel of T, B, and myeloid cell lines. Both antibodies inhibit the proliferation of alloantigen or mitogen-activated human peripheral blood lymphocytes (PBL). Unstimulated PBL are not affected by either MAB. The RB MAB each cause different morphologic changes of target cells. Whereas RBC4-inhibited cells exhibit nonspecific changes, RBG5 causes a progressive increase in the size and nuclear number of a subset of inhibited cells.</jats:p

    Cytokine influence on killing of fresh chronic lymphocytic leukemia cells by human leukocytes

    Full text link
    The feasibility of combining the Lym-1 monoclonal antibody (MoAb) with interferon-gamma (IFN-gamma) in the treatment of chronic lymphocytic leukemia (CLL) was evaluated. We used an in vitro tumor lysis model that incorporated fresh CLL cells from 21 different patients as targets for two distinct normal human leukocyte effector subsets, neutrophils, and peripheral blood mononuclear cells (PBMCs). Lym-1 antigen (Lym-1- Ag) expression varied greatly and did not correlate with the expression of other CLL-associated antigens such as CD5, CD19, or HLA-DR. CLL cells were not lysed by neutrophils alone or with IFN-gamma in the absence of Lym-1. Neutrophil Lym-1-dependent cytotoxicity (ADCC) in the absence of IFN-gamma was weak and inconsistent. IFN-gamma exposure induced MoAb-dependent lysis of 80% of 21 CLL targets and resulted in an eightfold augmentation of neutrophil ADCC against the remainder. Cytotoxicity correlated directly and positively with Lym-1-Ag expression. Confirmation of the need for interaction between neutrophil IgG Fc receptors (Fc gamma Rs) and the Fc portion of the Lym-1 MoAb was obtained by demonstrating that purified Staphylococcus aureus Protein A (SpA) inhibited ADCC. IFN-gamma exposure caused no consistent alternations in Lym-1-Ag expression on CLL cells so that target antigen upregulation was unlikely to account for augmentation of neutrophil ADCC. PBMCs alone, exposed to interkeukin-2 (IL-2) or IFN-gamma, or with Lym-1 in the presence or absence of IL-2 or IFN-gamma were unable to lyse CLL targets. PBMCs were able to kill Raji Burkitt lymphoma cells in conjunction with Lym-1, so their ability to interact with Lym- 1-coated targets and their lytic functions appeared intact. These results emphasize the importance of examining fresh tumor cells with different leukocyte effector subsets before designing a clinical trial that combines a therapeutic MoAb with a cytokine.</jats:p

    Cytokine influence on killing of fresh chronic lymphocytic leukemia cells by human leukocytes

    Full text link
    Abstract The feasibility of combining the Lym-1 monoclonal antibody (MoAb) with interferon-gamma (IFN-gamma) in the treatment of chronic lymphocytic leukemia (CLL) was evaluated. We used an in vitro tumor lysis model that incorporated fresh CLL cells from 21 different patients as targets for two distinct normal human leukocyte effector subsets, neutrophils, and peripheral blood mononuclear cells (PBMCs). Lym-1 antigen (Lym-1- Ag) expression varied greatly and did not correlate with the expression of other CLL-associated antigens such as CD5, CD19, or HLA-DR. CLL cells were not lysed by neutrophils alone or with IFN-gamma in the absence of Lym-1. Neutrophil Lym-1-dependent cytotoxicity (ADCC) in the absence of IFN-gamma was weak and inconsistent. IFN-gamma exposure induced MoAb-dependent lysis of 80% of 21 CLL targets and resulted in an eightfold augmentation of neutrophil ADCC against the remainder. Cytotoxicity correlated directly and positively with Lym-1-Ag expression. Confirmation of the need for interaction between neutrophil IgG Fc receptors (Fc gamma Rs) and the Fc portion of the Lym-1 MoAb was obtained by demonstrating that purified Staphylococcus aureus Protein A (SpA) inhibited ADCC. IFN-gamma exposure caused no consistent alternations in Lym-1-Ag expression on CLL cells so that target antigen upregulation was unlikely to account for augmentation of neutrophil ADCC. PBMCs alone, exposed to interkeukin-2 (IL-2) or IFN-gamma, or with Lym-1 in the presence or absence of IL-2 or IFN-gamma were unable to lyse CLL targets. PBMCs were able to kill Raji Burkitt lymphoma cells in conjunction with Lym-1, so their ability to interact with Lym- 1-coated targets and their lytic functions appeared intact. These results emphasize the importance of examining fresh tumor cells with different leukocyte effector subsets before designing a clinical trial that combines a therapeutic MoAb with a cytokine.</jats:p
    corecore