449 research outputs found

    Generalized Rate-Code Model for Neuron Ensembles with Finite Populations

    Full text link
    We have proposed a generalized Langevin-type rate-code model subjected to multiplicative noise, in order to study stationary and dynamical properties of an ensemble containing {\it finite} NN neurons. Calculations using the Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise, our rate model yields various kinds of stationary non-Gaussian distributions such as gamma, inverse-Gaussian-like and log-normal-like distributions, which have been experimentally observed. Dynamical properties of the rate model have been studied with the use of the augmented moment method (AMM), which was previously proposed by the author with a macroscopic point of view for finite-unit stochastic systems. In the AMM, original NN-dimensional stochastic differential equations (DEs) are transformed into three-dimensional deterministic DEs for means and fluctuations of local and global variables. Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs calculated by the AMM are in good agreement with those obtained by direct simulation. The synchronization in the neuronal ensemble is discussed. Variabilities of the firing rate and of the interspike interval (ISI) are shown to increase with increasing the magnitude of multiplicative noise, which may be a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor modification

    Topological Speed Limits to Network Synchronization

    Full text link
    We study collective synchronization of pulse-coupled oscillators interacting on asymmetric random networks. We demonstrate that random matrix theory can be used to accurately predict the speed of synchronization in such networks in dependence on the dynamical and network parameters. Furthermore, we show that the speed of synchronization is limited by the network connectivity and stays finite, even if the coupling strength becomes infinite. In addition, our results indicate that synchrony is robust under structural perturbations of the network dynamics.Comment: 5 pages, 3 figure

    The spike train statistics for consonant and dissonant musical accords

    Full text link
    The simple system composed of three neural-like noisy elements is considered. Two of them (sensory neurons or sensors) are stimulated by noise and periodic signals with different ratio of frequencies, and the third one (interneuron) receives the output of these two sensors and noise. We propose the analytical approach to analysis of Interspike Intervals (ISI) statistics of the spike train generated by the interneuron. The ISI distributions of the sensory neurons are considered to be known. The frequencies of the input sinusoidal signals are in ratios, which are usual for music. We show that in the case of small integer ratios (musical consonance) the input pair of sinusoids results in the ISI distribution appropriate for more regular output spike train than in a case of large integer ratios (musical dissonance) of input frequencies. These effects are explained from the viewpoint of the proposed theory.Comment: 22 pages, 6 figure

    Random Walks for Spike-Timing Dependent Plasticity

    Full text link
    Random walk methods are used to calculate the moments of negative image equilibrium distributions in synaptic weight dynamics governed by spike-timing dependent plasticity (STDP). The neural architecture of the model is based on the electrosensory lateral line lobe (ELL) of mormyrid electric fish, which forms a negative image of the reafferent signal from the fish's own electric discharge to optimize detection of sensory electric fields. Of particular behavioral importance to the fish is the variance of the equilibrium postsynaptic potential in the presence of noise, which is determined by the variance of the equilibrium weight distribution. Recurrence relations are derived for the moments of the equilibrium weight distribution, for arbitrary postsynaptic potential functions and arbitrary learning rules. For the case of homogeneous network parameters, explicit closed form solutions are developed for the covariances of the synaptic weight and postsynaptic potential distributions.Comment: 18 pages, 8 figures, 15 subfigures; uses revtex4, subfigure, amsmat

    Collective dynamics of two-mode stochastic oscillators

    Full text link
    We study a system of two-mode stochastic oscillators coupled through their collective output. As a function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed. In an extended region of the parameter space the periodicity of the collective output is enhanced by the considered coupling. This system can be used as a new model to describe synchronization-like phenomena in systems of units with two or more oscillation modes. The model can also explain how periodic dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible for the emergence of rhythmic behavior in complex biological or sociological systems.Comment: 4 pages, RevTex, 5 figure

    A comparative study of different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation

    Full text link
    Stochastic integrate-and-fire (IF) neuron models have found widespread applications in computational neuroscience. Here we present results on the white-noise-driven perfect, leaky, and quadratic IF models, focusing on the spectral statistics (power spectra, cross spectra, and coherence functions) in different dynamical regimes (noise-induced and tonic firing regimes with low or moderate noise). We make the models comparable by tuning parameters such that the mean value and the coefficient of variation of the interspike interval match for all of them. We find that, under these conditions, the power spectrum under white-noise stimulation is often very similar while the response characteristics, described by the cross spectrum between a fraction of the input noise and the output spike train, can differ drastically. We also investigate how the spike trains of two neurons of the same kind (e.g. two leaky IF neurons) correlate if they share a common noise input. We show that, depending on the dynamical regime, either two quadratic IF models or two leaky IFs are more strongly correlated. Our results suggest that, when choosing among simple IF models for network simulations, the details of the model have a strong effect on correlation and regularity of the output.Comment: 12 page

    Self-organization without conservation: Are neuronal avalanches generically critical?

    Full text link
    Recent experiments on cortical neural networks have revealed the existence of well-defined avalanches of electrical activity. Such avalanches have been claimed to be generically scale-invariant -- i.e. power-law distributed -- with many exciting implications in Neuroscience. Recently, a self-organized model has been proposed by Levina, Herrmann and Geisel to justify such an empirical finding. Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism "charging" progressively the background synaptic strength, this model/dynamics is very similar in spirit to forest-fire and earthquake models, archetypical examples of non-conserving self-organization, which have been recently shown to lack true criticality. Here we show that cortical neural networks obeying (i) and (ii) are not generically critical; unless parameters are fine tuned, their dynamics is either sub- or super-critical, even if the pseudo-critical region is relatively broad. This conclusion seems to be in agreement with the most recent experimental observations. The main implication of our work is that, if future experimental research on cortical networks were to support that truly critical avalanches are the norm and not the exception, then one should look for more elaborate (adaptive/evolutionary) explanations, beyond simple self-organization, to account for this.Comment: 28 pages, 11 figures, regular pape

    Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    Full text link
    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist novel hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.Comment: 4 pages, 4 figure

    Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses

    Get PDF
    This is a pre-print. The definitive version: BRESSLOFF, P.C., 1999. Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses. Physical Review E, 60(2), pp.2160-2170 Part B, is available at: http://pre.aps.org/.We analyze the effects of synaptic depression or facilitation on the existence and stability of the splay or asynchronous state in a population of all-to-all, pulse-coupled neural oscillators. We use mean-field techniques to derive conditions for the local stability of the splay state and determine how stability depends on the degree of synaptic depression or facilitation. We also consider the effects of noise. Extensions of the mean-field results to finite networks are developed in terms of the nonlinear firing time map

    Complete synchronization in coupled Type-I neurons

    Full text link
    For a system of type-I neurons bidirectionally coupled through a nonlinear feedback mechanism, we discuss the issue of noise-induced complete synchronization (CS). For the inputs to the neurons, we point out that the rate of change of instantaneous frequency with the instantaneous phase of the stochastic inputs to each neuron matches exactly with that for the other in the event of CS of their outputs. Our observation can be exploited in practical situations to produce completely synchronized outputs in artificial devices. For excitatory-excitatory synaptic coupling, a functional dependence for the synchronization error on coupling and noise strengths is obtained. Finally we report an observation of noise-induced CS between non-identical neurons coupled bidirectionally through random non-zero couplings in an all-to- all way in a large neuronal ensemble.Comment: 24 pages, 9 figure
    • …
    corecore