18 research outputs found
Towards a Clinically Relevant Lentiviral Transduction Protocol for Primary Human CD34+ Hematopoietic Stem/Progenitor Cells
Background: Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multipotency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34 + HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. Methodology/Principal Findings: Using commercially available G-CSF mobilized peripheral blood (PB) CD34 + cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, prestimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. Conclusions/Significance: This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34 + cells
Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media
Due to their immunosuppressive properties, mesenchymal stem cells (MSC) have been evaluated for the treatment of immunological diseases. However, the animal-derived growth supplements utilized for MSC manufacturing may lead to clinical complications. Characterization of alternative media formulations is imperative for MSC therapeutic application. Human BMMSC and AdMSC were expanded in media supplemented with either human platelet lysates (HPL), serum-free media/xeno-free FDA-approved culture medium (SFM/XF), or fetal bovine serum (FBS) and the effects on their properties were investigated. The immunophenotype of resting and IFN-γ primed BMMSC and AdMSC remained unaltered in all media. Both HPL and SFM/XF increased the proliferation of BMMSC and AdMSC. Expansion of BMMSC and AdMSC in HPL increased their differentiation, compared to SFM/XF and FBS. Resting BMMSC and AdMSC, expanded in FBS or SFM/XF, demonstrated potent immunosuppressive properties in both non-primed and IFN-γ primed conditions, whereas HPL-expanded MSC exhibited diminished immunosuppressive properties. Finally, IFN-γ primed BMMSC and AdMSC expanded in SFM/XF and HPL expressed attenuated levels of IDO-1 compared to FBS. Herein, we provide strong evidence supporting the use of the FDA-approved SFM/XF medium, in contrast to the HPL medium, for the expansion of MSC towards therapeutic applications
Recommended from our members
Translational research and therapeutic applications of neural crest-derived stem cells in regenerative periodontology
Regeneration of periodontal tissues aims to utilize tissue engineering techniques to restore lost periodontal tissues including the cementum, periodontal ligament and alveolar bone. Regenerative dentistry and its special field regenerative periodontology represent relatively new and emerging branches of translational stem cell biology and regenerative medicine focusing on replacing and regenerating dental tissues to restore or re-establish their normal function lost during degenerative diseases or acute lesions. The regeneration itself can be achieved through transplantation of autologous or allogenic stem cells, or by improving the tissue self-repair mechanisms (e.g. by application of growth factors). In addition, a combination of stem cells or stem cell-containing tissue with bone implants can be used to improve tissue integration and the clinical outcome. As the oral cavity represents a complex system consisting of teeth, bone, soft tissues and sensory nerves, regenerative periodontology relies on the use of stem cells with relatively high developmental potential. Notably, the potential use of pluripotent stem cell types such as human embryonic stem cells or induced pluripotent stem cells is still aggravated by ethical and practical problems. Thus, other cellular sources such as those readily available in the postnatal craniofacial area and particularly in oral structures offer a much better and realistic alternative as cellular regenerative sources. In this review, we summarize current knowledge on the oral neural crest-derived stem cell populations (oNCSCs) and discuss their potential in regenerative periodontology