27 research outputs found

    Antisites in silicon carbide

    Get PDF
    Ten years ago, deep-level-transient-spectroscopy (DLTS) signals, assigned to centers labeled as H1, H2, H3, and E2, have been detected in neutron-irradiated 3C SiC. The H centers were believed to be the primary point defects and the E2 center a secondary defect, which forms after the H centers start to migrate. A conclusive identification of these signals has not been presented so far. We present computational evidence that the H centers are due to silicon antisite defects (SiC). In both cubic (3C) and hexagonal (2H) polytypes, the silicon antisite has several ionization levels in the band gap. The positions of these ionization levels in 3C SiC have been calculated accurately with the plane wave pseudopotential method using a large 128-atom site supercell, and compared with the DLTS spectrum. A very good agreement with experimental data indicates that H centers are due to the formation of SiC during neutron irradiation. The formation energies and local geometries of the antisite defects in SiC are also reported.Peer reviewe

    Silicon vacancy in SiC: A high-spin state defect

    Get PDF
    We report results from spin-polarized ab initio local spin-density calculations for the silicon vacancy (VSi) in 3C– and 2H–SiC in all its possible charge states. The calculated electronic structure for SiC reveals the presence of a stable spin-aligned electron-state t2 near the midgap. The neutral and doubly negative charge states of VSi in 3C–SiC are stabilized in a high-spin configuration with S=1 giving rise to a ground state, which is a many-electron orbital singlet 3T1. For the singly negative VSi, we find a high-spin ground-state4A2 with S=3/2. In the high-spin configuration, VSi preserves the Td symmetry. These results indicate that in neutral, singly, and doubly negative charge states a strong exchange coupling, which prefers parallel electron spins, overcomes the Jahn–Teller energy. In other charge states, the ground state of VSi has a low-spin configuration.Peer reviewe

    Structure of the silicon vacancy in 6H-SiC after annealing identified as the carbon vacancy–carbon antisite pair

    Get PDF
    We investigated radiation-induced defects in neutron-irradiated and subsequently annealed 6H-silicon carbide (SiC) with electron paramagnetic resonance (EPR), the magnetic circular dichroism of the absorption (MCDA), and MCDA-detected EPR (MCDA-EPR). In samples annealed beyond the annealing temperature of the isolated silicon vacancy we observed photoinduced EPR spectra of spin S=1 centers that occur in orientations expected for nearest neighbor pair defects. EPR spectra of the defect on the three inequivalent lattice sites were resolved and attributed to optical transitions between photon energies of 999 and 1075 meV by MCDA-EPR. The resolved hyperfine structure indicates the presence of one single carbon nucleus and several silicon ligand nuclei. These experimental findings are interpreted with help of total energy and spin density data obtained from the standard local-spin density approximation of the density-functional theory, using relaxed defect geometries obtained from the self-consistent charge density-functional theory based tight binding scheme. We have checked several defect models of which only the photoexcited spin triplet state of the carbon antisite–carbon vacancy pair (CSi-VC) in the doubly positive charge state can explain all experimental findings. We propose that the (CSi-VC) defect is formed from the isolated silicon vacancy as an annealing product by the movement of a carbon neighbor into the vacancy

    Estimating the NH<sub>3</sub>:H<sub>2</sub>SO<sub>4</sub> ratio of nucleating clusters in atmospheric conditions using quantum chemical methods

    No full text
    We study the ammonia addition reactions of H<sub>2</sub>SO<sub>4</sub>&middot;NH<sub>3</sub> molecular clusters containing up to four ammonia and two sulfuric acid molecules using the ab initio method RI-MP2 (Resolution of Identity 2nd order Møller-Plesset perturbation theory). Together with results from previous studies, we use the computed values to estimate an upper limit for the ammonia content of small atmospheric clusters, without having to explicitly include water molecules in the quantum chemical simulations. Our results indicate that the NH<sub>3</sub>:H<sub>2</sub>SO<sub>4</sub> mole ratio of small molecular clusters in typical atmospheric conditions is probably around 1:2. High ammonia concentrations or low temperatures may lead to the formation of ammonium bisulfate (1:1) clusters, but our results rule out the formation of ammonium sulfate clusters (2:1) anywhere in the atmosphere. A sensitivity analysis indicates that the qualitative conclusions of this study are not affected even by relatively large errors in the calculation of electronic energies or vibrational frequencies
    corecore