57 research outputs found

    Photophysics and Biological Applications of 7-Azaindole and Its Analogs

    Get PDF
    7-Azaindole is the chromophoric moiety of 7-azatryptophan, which is an alternative to tryptophan as an optical probe of protein structure and dynamics. The great power of the 7-azaindole chromophore is that it is red shifted both in absorption and emission from tryptophan, that its fluorescence decay is single exponential in water under appropriate conditions, and that its emission is sensitive to solvent. In addition, 7-azatryptophan can be incorporated into synthetic peptides and bacterial protein. In this article, the interactions of 7-azaindole with its environment are discussed. Special attention is directed to the difference in its fluorescence properties in water as opposed to nonaqueous solvents. The sensitivity of 7-azaindole to its environment is demonstrated and then exploited by studying it and its analogs in peptides and in complexes with larger proteins containing many tryptophan residues

    Unravelling the structural complexity of glycolipids with cryogenic infrared spectroscopy

    Get PDF
    Glycolipids are complex glycoconjugates composed of a glycan headgroup and a lipid moiety. Their modular biosynthesis creates a vast amount of diverse and often isomeric structures, which fulfill highly specific biological functions. To date, no gold-standard analytical technique can provide a comprehensive structural elucidation of complex glycolipids, and insufficient tools for isomer distinction can lead to wrong assignments. Herein we use cryogenic gas-phase infrared spectroscopy to systematically investigate different kinds of isomerism in immunologically relevant glycolipids. We show that all structural features, including isomeric glycan headgroups, anomeric configurations and different lipid moieties, can be unambiguously resolved by diagnostic spectroscopic fingerprints in a narrow spectral range. The results allow for the characterization of isomeric glycolipid mixtures and biological applications

    The CD100 Receptor Interacts with Its Plexin B2 Ligand to Regulate Epidermal γδ T Cell Function

    Get PDF
    Summaryγδ T cells respond rapidly to keratinocyte damage, providing essential contributions to the skin wound healing process. The molecular interactions regulating their response are unknown. Here, we identify a role for interaction of plexin B2 with the CD100 receptor in epithelial repair. In vitro blocking of plexin B2 or CD100 inhibited γδ T cell activation. Furthermore, CD100 deficiency in vivo resulted in delayed repair of cutaneous wounds due to a disrupted γδ T cell response to keratinocyte damage. Ligation of CD100 in γδ T cells induced cellular rounding via signals through ERK kinase and cofilin. Defects in this rounding process were evident in the absence of CD100-mediated signals, thereby providing a mechanistic explanation for the defective wound healing in CD100-deficient animals. The discovery of immune functions for plexin B2 and CD100 provides insight into the complex cell-cell interactions between epithelial resident γδ T cells and the neighboring cells they support

    Structure and function of a membrane-bound murine MHC class I molecule.

    No full text
    MHC molecules are expressed at the surface of nucleated cells to present peptides to T cells. Structural information on MHC molecules has been gathered by x-ray crystallography techniques by using soluble proteins. Although relationships between MHC molecules and cell membranes have not been studied in detail, they are of critical importance for T cell recognition. Using a chemically modified lipid, we have been able to capture and orient histidine-tagged MHC molecules on lipid membranes. Surface plasmon resonance experiments show that the protein binds to the nickel lipid in a specific manner and in an oriented fashion, which allows T cell receptor binding. Similar lipid surfaces have been used to grow two-dimensional crystals and to determine the structure of a membrane-anchored murine H-2Kb MHC class I molecule. The docking of the crystallographic structure into the three-dimensional reconstructed structure derived from the two-dimensional crystals allows us to determine that the histidine tag is near the membrane surface and that the MHC molecule is in an upright position, exposing the peptide/alpha1-alpha2 domains toward the T cell

    Glycolipids from Sponges. 18. Corrugoside, a New Immunostimulatory alpha- Galactoglycosphingolipid from the Marine Sponge Axinella corrugata

    No full text
    Corrugoside (1a), a new immunostimulatory triglycosilated a-galactoglycosphingolipid, was isolated from the marine sponge Axinella corrugata, and its structure determined by spectral analysis and chemical degradation. Compound 1a activated murine NKT cells in vitro, with a potency of about 2 logs lower than that of aGalCer. Four stereoisomeric glycosphingolipids (2a–2d) were also obtained, b-glucosylceramides bearing unusual endoperoxide and allylic hydroperoxide functionalities on the sphinganine chain. They were shown to be photooxidation artifacts of the known glycosphingolipids 3, also present in the sponge. A possible role of compound 3 as a singlet oxygen scavenger to protect the organism from oxidative damage is proposed

    Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy.

    No full text
    Isolating antigen-specific T lymphocytes is hampered by the low frequency of the cells and the low affinity between T-cell receptors (TCR) and antigen. We describe the isolation and purification of antigen-specific CD8+ T lymphocytes from mixed T-cell populations. Magnetic beads coated with major histocompatibility complex class I molecules loaded with specific peptide were used as a substrate for T-cell capture. Low-frequency T cells, as well as T cells with TCR of low affinity for the antigen were captured on the beads. Following isolation and expansion, recovered cells specifically killed target cells in vitro, and displayed antiviral effect in vivo
    • …
    corecore