234 research outputs found

    Beta Cell Imaging—From Pre-Clinical Validation to First in Man Testing

    Get PDF
    There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2γa as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers

    Identification of elongated cilia and chiral malformation in TMEM67 mutant brains

    Get PDF
    poster abstractTransmembrane protein 67 (TMEM67) is encoded by one of four syndromic encephalocele genes. In humans a mutation in TMEM67 causes Meckel Gruber Syndrome, type 3 (MKS3) which is characterized by severe encephalocele and cystic kidneys and is usually fatal in the neonatal period. MKS3 is one of a spectrum of diseases known as ciliopathies because the proteins responsible for the disease are found in cells with the primary cilia. Primary cilia are a single, hair-like organelle that is found on the apical membrane of polarized cells and is thought to be involved in formation of left-right asymmetry during development as well as mechano- and chemo-reception. Here we characterize previously unreported details of cerebral phenotype in the Wistar polycystic kidney (Wpk) rats with a TMEM67 mutation. In choroid plexus (CP) epithelia of wild type animals, TMEM67 localizes to the plasma membrane and to a region close to the basal side of CP primary cilia. In a choroid plexus cell line that forms an epithelial sheet, the TMEM67 is found intracellularly but also localizes to the junctional complexes as evidenced by β catenin co-localization. Absence of normal TMEM67 leads to elongation of primary cilia in the ependymal cells lining the cerebral ventricles of the TMEM67-/- animals indicating that this protein is involved in the regulation of cilia length. Reduced aqueduct, bilateral dilatation with fusion of lateral ventricles, swelling of the hippocampus, and altered hindbrain histoarchitecture are noted in the TMEM67-/- rats. In the heterozygous animals mild asymmetric ventriculomegaly primarily on the left side is observed during early postnatal periods and continues into adulthood. These results suggest that TMEM67 is required for cilia length control and normal development of cerebral midline that maintains the symmetry of the left and right hemispheres. The Wpk rat model, orthologous to human MKS3, provides a unique model in which to study the development of both severe (TMEM67-/-) and mild (TMEM67+/-) hydrocephalus and other developmental abnormalities that are commonly found in human patients with ciliopathies

    In vivo UTE-MRI reveals positive effects of raloxifene on skeletal bound water in skeletally mature beagle dogs

    Get PDF
    Raloxifene positively affects mechanical properties of the bone matrix in part through modification of skeletal bound water. The goal of this study was to determine if raloxifene induced alterations in skeletal hydration could be measured in vivo using ultra-short echotime magnetic resonance imaging (UTE-MRI). Twelve skeletally mature female beagle dogs (n=6/group) were treated for 6 months with oral doses of saline vehicle (VEH, 1 ml/kg/day) or raloxifene (RAL, 0.5 mg/kg/day). Following six months of treatment, all animals underwent in vivo UTE-MRI of the proximal tibial cortical bone. UTE-MRI signal intensity versus echotime curves were analyzed by fitting a double exponential to determine the short and long relaxation times of water with the bone (dependent estimations of bound and free water, respectively). Raloxifene-treated animals had significantly higher bound water (+14%; p = 0.05) and lower free water (-20%) compared to vehicle-treated animals. These data provide the first evidence that drug-induced changes in skeletal hydration can be non-invasively assessed using UTE-MRI.Funding for this study was provided by NIH (AR 62002 and a BIRT supplement). Raloxifene was provided by through an MTA with Eli Lilly

    Longitudinal Bioluminescence Imaging of Primary Versus Abdominal Metastatic Tumor Growth in Orthotopic Pancreatic Tumor Models in NSG Mice

    Get PDF
    Objectives: The purpose of the present study was to develop and validate noninvasive bioluminescence imaging methods for differentially monitoring primary and abdominal metastatic tumor growth in mouse orthotopic models of pancreatic cancer. Methods: A semiautomated maximum entropy segmentation method was implemented for the primary tumor region of interest, and a rule-based method for manually drawing a region of interest for the abdominal metastatic region was developed for monitoring tumor growth in orthotopic models of pancreatic cancer. The 2 region-of-interest methods were validated by having 2 observers independently segment Panc-1 tumors, and the results were compared with the number of mesenteric lymph node nodules and histopathologic assessment of liver metastases. The findings were extended to orthotopic tumors of the more metastatic MIA PaCa-2 and AsPC-1 cells where separate groups of animals were implanted with different numbers of cells. Results: The results demonstrated that the segmentation methods were highly reliable, reproducible, and robust and allowed statistically significant discrimination in the growth rates of primary and abdominal metastatic tumors of different cell lines implanted with different numbers of cells. Conclusions: The present results demonstrate that primary tumors and abdominal metastatic foci in orthotopic pancreatic cancer models can be reliably quantified separately and noninvasively over time with bioluminescence imaging

    Skeletal levels of bisphosphonate in the setting of chronic kidney disease are independent of remodeling rate and lower with fractionated dosing

    Get PDF
    Background Chronic kidney disease (CKD) results in a dramatic increase in skeletal fracture risk. Bisphosphates (BP) are an effective treatment for reducing fracture risk but they are not recommended in advanced CKD. We have recently shown higher acute skeletal accumulation of fluorescently-tagged zoledronate (ZOL) in the setting of CKD but how this accumulation is retained/lost over time is unclear. Furthermore, it is unknown if alternative dosing approaches can modulate accumulation in the setting of CKD. Methods To address these two questions normal (NL) and Cy/+ (CKD) rats were divided into control groups (no dosing), a single dose of a fluorescent-tagged ZOL (FAM-ZOL), a single dose of non-labelled zoledronate (ZOL) or ten weekly doses of FAM-ZOL each at 1/10th the dose of the single dose group. Half of the CKD animals in each group were provided water with 3% calcium in drinking water (CKD + Ca) to suppress PTH and remodeling. At 30 or 35 weeks of age, serum, tibia, ulna, radius, vertebra, femora, and mandible were collected and subjected to assessment methods including biochemistry, dynamic histomorphometry and multi-spectral fluorescence levels (using IVIS SpectrumCT). Results FAM-ZOL did not significantly reduce bone remodeling in either NL or CKD animals while Ca supplementation in CKD produced remodeling levels comparable to NL. At five- and ten-weeks post-dosing, both CKD and CKD + Ca groups had higher levels of FAM-ZOL in most, but not all, skeletal sites compared to NL with no difference between the two CKD groups suggesting that the rate of remodeling did not affect skeletal retention of FAM-ZOL. Fractionating the FAM-ZOL into ten weekly doses led to 20–32% less (p < 0.05) accumulation/retention of compound in the vertebra, radius, and ulna compared to administration as a single dose. Conclusions The rate of bone turnover does not have significant effects on levels of FAM-ZOL accumulation/retention in animals with CKD. A lower dose/more frequent administration paradigm results in lower levels of accumulation/retention over time. These data provide information that could better inform the use of bisphosphonates in the setting of CKD in order to combat the dramatic increase in fracture risk

    Marrow transplantation from unrelated donors for patients with severe aplastic anemia who have failed immunosuppressive therapy

    Get PDF
    AbstractAllogeneic marrow transplantation offers curative therapy for patients with aplastic anemia. We analyzed retrospective results in 141 patients with severe aplastic anemia who received transplants between 1988 and 1995 from an unrelated volunteer donor identified through the National Marrow Donor Program (NMDP). All patients had failed one or more courses of immunosuppressive therapy. Of the patients, 121 (86%) received a radiation-containing conditioning regimen, and 20 (14%) were given chemotherapy only. Based on serologic human leukocyte antigen (HLA) typing (class I and II), 105 patients (74%) received HLA-matched marrow, and 36 (26%) received marrow mismatched for at least one HLA-A, -B, or -DR antigen. Allele-level (molecular) typing for HLA-DRB1 was available in 108 donor-recipient pairs; 77 patients received DRB -matched and 31 DRB1-mismatched transplants. All but 13% of patients were given a cyclosporine-containing regimen for graft-vs.-host disease (GVHD) prophylaxis, and 45 patients (32%) received marrow that was T cell-depleted. Among 131 evaluable patients, 116 (89%) achieved sustained engraftment and 15 (11%) did not. Among patients with engraftment, acute GVHD of grades II-IV developed in 60 patients (52%) and extensive chronic GVHD in 24 patients at risk (31%). Currently, 51 patients (36%) are surviving at 11-94 months (median 36) after transplantation. All but five have Karnofsky scores > or =80. Patients who received a serologically matched transplant fared somewhat better than did patients given a serologically mismatched transplant p = 0.03). Patients with donors matched by both serology and allele-level DRB1 typing had significantly better survival than DRB1-mismatched patients with 56 vs. 15% surviving at 3 years p = 0.001). Outcome in patients transplanted within 3 years of diagnosis was superior to that among patients transplanted with greater delay. Major causes of death were graft failure, GVHD, and infections. These data suggest that unrelated marrow transplantation offers successful therapy for a proportion of patients who have failed immunosuppressive therapy.Biol Blood Marrow Transplant 1999;5(4):243-52

    Human adipose derived stromal/stem cells (hASCs) protect against STZ-induced hyperglycemia; analysis of hASC-derived paracrine effectors

    Get PDF
    Adipose-derived stromal/stem cells (ASCs) ameliorate hyperglycemia in rodent models of islet transplantation and autoimmune diabetes, yet the precise human ASC (hASC)-derived factors responsible for these effects remain largely unexplored. Here, we show that systemic administration of hASCs improved glucose tolerance, preserved β cell mass, and increased β cell proliferation in streptozotocin-treated nonobese diabetic/severe combined immunodeficient mice. Coculture experiments combining mouse or human islets with hASCs demonstrated that islet viability and function were improved by hASCs following prolonged culture or treatment with proinflammatory cytokines. Analysis of hASC-derived factors revealed vascular endothelial growth factor and tissue inhibitor of metalloproteinase 1 (TIMP-1) to be highly abundant factors secreted by hASCs. Notably, TIMP-1 secretion increased in the presence of islet stress from cytokine treatment, while TIMP-1 blockade was able to abrogate in vitro prosurvival effects of hASCs. Following systemic administration by tail vein injection, hASCs were detected in the pancreas and human TIMP-1 was increased in the serum of injected mice, while recombinant TIMP-1 increased viability in INS-1 cells treated with interleukin-1beta, interferon-gamma, and tumor necrosis factor alpha. In aggregate, our data support a model whereby factors secreted by hASCs, such as TIMP-1, are able to mitigate against β cell death in rodent and in vitro models of type 1 diabetes through a combination of local paracrine as well as systemic effects

    Comprehensive Evaluation of the 5XFAD Mouse Model for Preclinical Testing Applications: A MODEL-AD Study.

    Get PDF
    The ability to investigate therapeutic interventions in animal models of neurodegenerative diseases depends on extensive characterization of the model(s) being used. There are numerous models that have been generated to study Alzheimer\u27s disease (AD) and the underlying pathogenesis of the disease. While transgenic models have been instrumental in understanding AD mechanisms and risk factors, they are limited in the degree of characteristics displayed in comparison with AD in humans, and the full spectrum of AD effects has yet to be recapitulated in a single mouse model. The Model Organism Development and Evaluation for Late-Onset Alzheimer\u27s Disease (MODEL-AD) consortium was assembled by the National Institute on Aging (NIA) to develop more robust animal models of AD with increased relevance to human disease, standardize the characterization of AD mouse models, improve preclinical testing in animals, and establish clinically relevant AD biomarkers, among other aims toward enhancing the translational value of AD models in clinical drug design and treatment development. Here we have conducted a detailed characterization of the 5XFAD mouse, including transcriptomics, electroencephalogram

    18F-NaF and 18F-FDG as molecular probes in the evaluation of atherosclerosis

    Get PDF
    The early detection of atherosclerotic disease is vital to the effective prevention and management of life-threatening cardiovascular events such as myocardial infarctions and cerebrovascular accidents. Given the potential for positron emission tomography (PET) to visualize atherosclerosis earlier in the disease process than anatomic imaging modalities such as computed tomography (CT), this application of PET imaging has been the focus of intense scientific inquiry. Although 18F-FDG has historically been the most widely studied PET radiotracer in this domain, there is a growing body of evidence that 18F-NaF holds significant diagnostic and prognostic value as well. In this article, we review the existing literature on the application of 18F-FDG and 18F-NaF as PET probes in atherosclerosis and present the findings of original animal and human studies that have examined how well 18F-NaF uptake correlates with vascular calcification and cardiovascular risk
    • …
    corecore