15 research outputs found
Verification investigation of advanced technologies improving durability of the components of engines used in European aircraft industry
Procesy otrzymywania powłok dyfuzyjnych stosowane są od ponad pół wieku i stanowią opłacalny sposób zwiększania odporności na korozję i utlenianie stopów, przez wzbogacenie ich warstwy wierzchniej w pierwiastki takie jak np. Al, Si czy Cr. Powłoki aluminidkowe są stosowane na szeroką skalę, jako ochrona łopatek kierujących oraz wirujących wykonanych z nadstopów niklu, pracujących w gorącej części turbin gazowych, w celu zwiększenia ich odporności na utlenianie oraz korozję. Wzrost trwałości lub temperatury pracy łopatek turbin umożliwiają powłokowe bariery cieplne (Thermal Barrier Coatings – TBC) stanowiące system powłok składających się z zewnętrznej powłoki tlenku cyrkonu stabilizowanego tlenkiem itru (ZrO2 • Y2O3) o bardzo niskim współczynniku przewodnictwa cieplnego (~1 W•m-1•K-1) oraz dyfuzyjnej międzywarstwy aluminidkowej modyfi kowanej platyną. Ze względu na wysoki koszt platyny poszukuje się tańszej alternatywy, którą może być np. pallad. W artykule scharakteryzowano aspekty technologiczne oraz badawcze związane z rozwojem pokryć ochronnych stosowanych na łopatkach turbin nowoczesnych silników lotniczych. Przedstawiono wyniki badań realizowanych w Zakładzie Badań Właściwości i Struktury Materiałów Instytutu Metalurgii Żelaza we współpracy z przemysłem lotniczym, Politechniką Śląską oraz ośrodkami zagranicznymi – DLR German Aerospace Center i Fraunhofer IST, mających na celu opracowywanie nowych parametrów technologicznych wytwarzania powłok oraz określenie ich wpływu na skład chemiczny, mikrostrukturę oraz właściwości mechaniczne powłok i stopów. Bardzo silny nacisk w pracach badawczych realizowanych w IMŻ kładzie się na procesy wzrostu i degradacji zarówno powłok żaroodpornych jak i stopów żarowytrzymałych na skutek utleniania wysokotemperaturowego i korozji. Jednym z zasadniczych problemów, na jaki napotyka się w ocenie wpływu powłok na ich właściwości ochronne jest wyjaśnienie mechanizmu oddziaływania pierwiastków na poziomie substruktury. Wyjaśnienie zagadnień związanych z procesami wzrostu i degradacji powłok, zachodzącymi w skali mikro i nano możliwe jest dzięki osiągnięciom w rozwoju nowoczesnej aparatury badawczej, a w szczególności mikroskopii elektronowej.The processes of obtaining diffusion coatings have been used for more than half of the century, and constitute profi tablemanner of improving corrosion and oxidation resistance of alloys, by enriching their surface layer in elements such as e.g. Al, Si or Cr. Aluminide coatings are widely used as protection of guide and spinning blades made of nickel superalloys, operating in hot part of gas turbines, in order to improve their resistance to oxidation and corrosion. Increase in durability or temperature of turbine blades operations is facilitated by Thermal Barrier Coatings – constituting the system of coatings composed of outer coating of zirconium oxide stabilized with yttrium oxide (ZrO2 • Y2O3) of very low thermal conductivity coefficient (~1 W•m-1•K-1) as well as diffusion aluminide interlayer modified with platinum. Due to very high cost of platinum, a cheaper alternative is sought, which might be e.g. palladium. The article characterizes technological and research aspects related to development of protective coatings used on turbine blades of advanced aircraft engines. It presents results of research conducted at Department of Investigations
of Properties and Structure of Materials of Instytut Metalurgii Żelaza in cooperation with aircraft industry, Silesian University of Technology and foreign institutions – DLR German Aerospace Center and Fraunhofer IST, aimed at development of new technological parameters of coatings production as well as determining the impact thereof on chemical composition, microstructure and mechanical properties of coatings and alloys. Considerable emphasis in research studies realized at IMŻ is put to growth and degradation processes both of heat resistant coatings and heat proof alloys as a result of high temperature and corrosion. One of the fundamental problems encountered in assessment of the impact of coatings on their protective properties is explanation of the mechanism of elements’ impact at the level of substructure. Explanation of the issues related to the processes of growth and degradation of coatings occurring on micro- and nano scale is possible, owing to achievements in development of advanced research equipment and in particular – electron microscopy
Degradation problems and hafnium modified aluminide coatings on aircraft engine parts
W artykule przedstawiono wyniki badań nad strukturą powłok aluminidkowych na wybranych stopach żarowytrzymałych wytwarzanych metodą gazową (out of pack) oraz fizycznego osadzania PVD. Przedstawiono wpływ parametrów otrzymywania powłok na stopach Inconel 100 oraz Mar M 247. Wykazano zależność pomiędzy składem chemicznym stopów a strukturą oraz rozmieszczeniem pierwiastków w powłoce aluminidkowej. Wyniki badań odporności na cykliczne utlenianie powłok aluminidkowych na stopach wykazały, że najwyższą odpornością charakteryzuje się powłoka na stopie Mar M 247. Przedstawiono wyniki badań łopatek z powłokami powłok w testach silnikowych. Przeprowadzono analizę zmian na powierzchni łopatek kierujących oraz degradacji struktury w charakterystycznych przekrojach poprzecznych łopatek kierujących. Wykazano, że obszarem szczególnie narażonym na złuszczenia powłoki jest obszar wysokiego ciśnienia. Analiza degradacji struktury powłok po testach silnikowych wskazuje na lokalny charakter ataku korozyjnego. W produktach korozji stwierdzono podwyższoną zawartość siarki oraz cynku. Przedstawiono możliwość zwiększenia odporności na cykliczne utlenianie powłok aluminidkowych przez ich modyfikację hafnem. Wykazano możliwość wprowadzania hafnu do powłok aluminidkowych metodą Arc-PVD.The article presents structure investigation results of aluminide coatings deposited on heat-resistant alloys using gas phase method (out of pack) and physical vapor deposition (PVD). It describes the influence of deposition process parameters on the coatings applied on Inconel 100 and Mar M 247 alloys. A dependence of alloys' chemical composition on the structure and elements distribution of the aluminide coatings has been revealed. Cyclic oxidation tests of aluminide coatings on these alloys proved that the coating on Mar M 247 alloy exhibits the highest durability. Engine test results of coated blades are presented. The conducted analysis concerned the changes occurring on the surface of the vanes as well as structure degradation in the cross sections. It has been revealed that the high pressure area is particularly prone to coating spallation. Degradation analysis of the coatings structure after engine tests indicates a local type of the corrosion attack. An increased amount of sulfur and zinc has been found in the corrosion products. A prospect of aluminide coatings cyclic oxidation resistance increase induced by hafnium modification is presented. Arc-PVD method has been proven to be useable in introducing hafnium to aluminide coatings
Application of heat-resistant coatings to gas turbine components
Tradycyjną metoda wytwarzania powłok żaroodpornych
jest proszkowanie, które polega
na umieszczeniu elementu podawanego procesowi
w kontenerze z mieszaniną proszkową.
Rozwinięciem tej metody jest metoda gazowa
- bezkontaktowa. Jej główną cechą jest oddzielenie
pokrywanych elementów od mieszaniny
proszkowej: warto przyjrzeć sie jej zaletom.The traditional method of producing heat-resistant
coatings is pack cementation, which involves
embedding the component undergoing
the process in a powder mixture. An extension
of this method is the gas phase out-of-pack deposition,
which is characterised by the fact that
the parts to be coated are separated from the
powder mixture. Advantages of the latter process
deserve consideration
Protic ionic liquids for sustainable uses
This review provides an overview of the current state-of-the-art and major trends in the application of protic ionic liquids (PILs) to sustainable chemistry. Following a brief description of the distinguishing properties of PILs, there are four application areas reviewed: acid catalysis, biomass transformations, energy storage and conversion, and electrocatalysis. The aim of this contribution is to showcase applications in which the properties of PILs are the key enabling factor for a particular sustainable chemistry challenge. In addition, the challenges and future directions in sustainable applications of PILs are discussed, highlighting challenges as well as areas for future development.</p
Charakterystyka mikrostruktury stopu TiAlCrNb po procesie aluminiowania gazowego
This article presents a microstructure characterization of an alloy coating based on Ti-48Al-2Cr-2Nb- type γ + α2 intermetallic phases deposited via an out-of-pack aluminizing process. The goal of the aluminizing process was to obtain a coating composed of aluminum-rich TiAl2 or TiAl3 phases with greater oxidation resistance compared to the base alloy. The results showed that the gas-phase aluminizing process produced a coating with specific microstructural properties. The thickness of the layer obtained, including the transition zone, was approximately 20µm. X-ray diffraction (XRD) phase composition studies demonstrated that the outer coating zone was primarily composed of a TiAl2 phase, and its thickness was approximately 10 µm. Microanalysis of the chemical composition showed that, in addition to the main components, i.e. titanium and aluminum, chromium and niobium were present in the outer coating. Electron backscatter diffraction (EBSD) studies further indicated the probable presence of a TiAl2 phase. The coating obtained was of good quality, and cracks or pores, which are typical of coatings obtained via powder methods, were not detected.W artykule przedstawiono wyniki badań mikrostruktury warstwy wierzchniej stopu na osnowie faz międzymetalicznych γ + α2 typu Ti-48Al-2Cr-2Nb po procesie aluminiowania metodą out-of-pack. Celem procesu aluminiowania było uzyskanie warstwy zewnętrznej zbudowanej z bogatych w aluminium faz typu TiAi2 lub TiAl3 o wyższej odporności na utlenianie w porównaniu do stopu podłoża. Zrealizowane badania wykazały, że zastosowanie metody aluminiowania gazowego pozwoliło na wytworzenie na powierzchni stopu pokrycia o zakładanych właściwościach mikrostrukturalnych. Grubość otrzymanej warstwy, łącznie ze strefą przejściową wynosiła ok. 20 µm. Mikroanaliza składu chemicznego wykazała również, że poza głónymi składnikami tj. tytanem i aluminium w obszarze tym obecne były również chrom i niob. Badania EBSD wykazały ponadto prawdopodobną obecność fazy Ti3Al5. Uzyskane pokrycie było dobrej jakości, nie stwierdzono pęknięć ani pustek, typowych dla warstw otrzymanych metodami proszkowymi