1,597 research outputs found

    Seasonal Climatology of Hydrographic Conditions in the Upwelling Region Off Northern Chile

    Get PDF
    Over 30 years of hydrographic data from the northern Chile (18 degreesS-24 degreesS) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve cross-shelf gradients and then presented as means within four seasons: austral winter (July-September), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (December-March). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 m depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21 degreesS), A subsurface oxygen minimum, centered at similar to 250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile-Peru Current system

    Seasonal Climatology of Hydrographic Conditions in the Upwelling Region Off Northern Chile

    Get PDF
    Over 30 years of hydrographic data from the northern Chile (18°S-24°S) upwelling region are used to calculate the surface and subsurface seasonal climatology extending 400 km offshore. The data are interpolated to a grid with sufficient spatial resolution to preserve crossshelf gradients and then presented as means within four seasons: austral winter (JulySeptember), spring (October-December), summer (January-March), and fall (April-June). Climatological monthly wind forcing, surface temperature, and sea level from three coastal stations indicate equatorward (upwelling favorable) winds throughout the year, weakest in the north. Seasonal maximum alongshore wind stress is in late spring and summer (DecemberMarch). Major water masses of the region are identified in climatological T-S plots and their sources and implied circulation discussed. Surface fields and vertical transects of temperature and salinity confirm that upwelling occurs year-round, strongest in summer and weakest in winter, bringing relatively fresh water to the surface nearshore. Surface geostrophic flow nearshore is equatorward throughout the year. During summer, an anticyclonic circulation feature in the north which extends to at least 200 rn depth is evident in geopotential anomaly and in both temperature and geopotential variance fields. Subsurface fields indicate generally poleward flow throughout the year, strongest in an undercurrent near the coast. This undercurrent is strongest in summer and most persistent and organized in the south (south of 21°S). A subsurface oxygen minimum, centered at ~250 m, is strongest at lower latitudes. Low-salinity subsurface water intrudes into the study area near 100 m, predominantly in offshore regions, strongest during summer and fall and in the southernmost portion of the region. The climatological fields are compared to features off Baja within the somewhat analogous California Current and to measurements from higher latitudes within the Chile-Peru Current system. Copyright 2001 by the American Geophysiccal Union

    Self-Pacing, Individualized Instruction: An Overview

    Get PDF
    During the last fifty years, education has been in a flux due to continuous technological changes and greater interaction on the societal scene. As a result, developmental education practices have been the subject of controversy. Schools have been called upon to maintain their conservative, traditional role, yet, they are expected to continue with innovative ideas which will provide a quality education for all students regardless of their academic or socio-economic level. The stability of education at the local, state and national level is dependent on the maintenance of long-established customs; whereas, the progress of an industrial society demands constant experimentation so change can occur

    Satellite-Measured Chlorophyll and Temperature Variability Off Northern Chile During the 1996-1998 La Niña and El Niño

    Get PDF
    Time series of satellite measurements are used to describe patterns of surface temperature and chlorophyll associated with the 1996 cold La Nina phase and the 1997-1998 warm El Nino phase of the El Nino - Southern Oscillation cycle in the upwelling region off northern Chile. Surface temperature data are available through the entire study period. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data first became available in September 1997 during a relaxation in El Nino conditions identified by in situ hydrographic data. Over the time period of coincident satellite data, chlorophyll patterns closely track surface temperature patterns. Increases both in nearshore chlorophyll concentration and in cross-shelf extension of elevated concentrations are associated with decreased coastal temperatures during both the relaxation in El Nino conditions in September-November 1997 and the recovery from EI Nino conditions after March 1998. Between these two periods during austral summer (December 1997 to March 1998) and maximum El Nino temperature anomalies, temperature patterns normally associated with upwelling were absent and chlorophyll concentrations were minimal. Cross-shelf chlorophyll distributions appear to be modulated by surface temperature frontal zones and are positively correlated with a satellite-derived upwelling index. Frontal zone patterns and the upwelling index in 1996 imply an austral summer nearshore chlorophyll maximum, consistent with SeaWiFS data from I 1998-1999, after the El Nino. SeaWiFS retrievals in the data set used here are higher than in situ measurements by a factor of 2-4; however, consistency in the offset suggests relative patterns are valid

    Shared as well as distinct roles of EHD proteins revealed by biochemical and functional comparisons in mammalian cells and C. elegans

    Get PDF
    BACKGROUND: The four highly homologous human EHD proteins (EHD1-4) form a distinct subfamily of the Eps15 homology domain-containing protein family and are thought to regulate endocytic recycling. Certain members of this family have been studied in different cellular contexts; however, a lack of concurrent analyses of all four proteins has impeded an appreciation of their redundant versus distinct functions. RESULTS: Here, we analyzed the four EHD proteins both in mammalian cells and in a cross-species complementation assay using a C. elegans mutant lacking the EHD ortholog RME-1. We show that all human EHD proteins rescue the vacuolated intestinal phenotype of C. elegans rme-1 mutant, are simultaneously expressed in a panel of mammalian cell lines and tissues tested, and variably homo- and hetero-oligomerize and colocalize with each other and Rab11, a recycling endosome marker. Small interfering RNA (siRNA) knock-down of EHD1, 2 and 4, and expression of dominant-negative EH domain deletion mutants showed that loss of EHD1 and 3 (and to a lesser extent EHD4) but not EHD2 function retarded transferrin exit from the endocytic recycling compartment. EH domain deletion mutants of EHD1 and 3 but not 2 or 4, induced a striking perinuclear clustering of co-transfected Rab11. Knock-down analyses indicated that EHD1 and 2 regulate the exit of cargo from the recycling endosome while EHD4, similar to that reported for EHD3 (Naslavsky et al. (2006) Mol. Biol. Cell 17, 163), regulates transport from the early endosome to the recycling endosome. CONCLUSION: Altogether, our studies suggest that concurrently expressed human EHD proteins perform shared as well as discrete functions in the endocytic recycling pathway and lay a foundation for future studies to identify and characterize the molecular pathways involved

    Soil nutrient content and water level variation drive mangrove forest aboveground biomass in the lagoonal ecosystem of Aldabra Atoll

    Full text link
    Lagoonal mangrove ecosystems are vital for carbon capture, protection of coastlines and conservation of biodiversity. Yet, they are decreasing globally at a higher rate than other mangrove ecosystems. In addition to human drivers, local environmental factors influence the functioning of lagoonal mangrove ecosystems, but their importance and combined effects are relatively unknown. Here, we investigate the drivers of mangrove functioning, approximated by mangrove aboveground biomass (AGB), in a protected lagoonal mangrove ecosystem on Aldabra Atoll, Seychelles. Based on a survey of the mangrove forest structure in 54 plots, we estimated that the mean mangrove forest AGB was 82 ± 13 Mg ha−1. The total AGB of the mangrove area (1720 ha) was nearly 140,600 Mg, equivalent to about 66,100 Mg of carbon stored in the standing biomass on Aldabra. To assess the direct and indirect effects of soil nutrient content, water level variation and soil salinity on mangrove AGB, we used a structural equation model. Our structural equation model explained 82 % of the variation in mangrove AGB. The soil nutrient content (concentration of essential macronutrients in the soil column) had the greatest influence on mangrove AGB variation. Additionally, high variation in water level (change in water depth covering a location) increased mangrove AGB by increasing nutrient content levels. Our results highlight the important contribution of Aldabra's lagoonal ecosystem to Seychelles' carbon storage and the role of hydroperiod as a regulator controlling the availability of crucial nutrients needed for the functioning of mangroves within lagoonal systems. We suggest conservation managers worldwide focus on a holistic ecosystem-level perspective for successful mangrove conservation, including the protection and maintenance of nutrient cycling and hydrological processes

    Satellite-Derived Variability in Chlorophyll, Wind Stress, Sea Surface Height, and Temperature in the Northern California Current System

    Get PDF
    Satellite-derived data provide the temporal means and seasonal and nonseasonal variability of four physical and biological parameters off Oregon and Washington ( 41 degrees - 48.5 degrees N). Eight years of data ( 1998 - 2005) are available for surface chlorophyll concentrations, sea surface temperature ( SST), and sea surface height, while six years of data ( 2000 - 2005) are available for surface wind stress. Strong cross-shelf and alongshore variability is apparent in the temporal mean and seasonal climatology of all four variables. Two latitudinal regions are identified and separated at 44 degrees - 46 degrees N, where the coastal ocean experiences a change in the direction of the mean alongshore wind stress, is influenced by topographic features, and has differing exposure to the Columbia River Plume. All these factors may play a part in defining the distinct regimes in the northern and southern regions. Nonseasonal signals account for similar to 60 - 75% of the dynamical variables. An empirical orthogonal function analysis shows stronger intra-annual variability for alongshore wind, coastal SST, and surface chlorophyll, with stronger interannual variability for surface height. Interannual variability can be caused by distant forcing from equatorial and basin-scale changes in circulation, or by more localized changes in regional winds, all of which can be found in the time series. Correlations are mostly as expected for upwelling systems on intra-annual timescales. Correlations of the interannual timescales are complicated by residual quasi-annual signals created by changes in the timing and strength of the seasonal cycles. Examination of the interannual time series, however, provides a convincing picture of the covariability of chlorophyll, surface temperature, and surface height, with some evidence of regional wind forcing

    Survival Rate, Fracture Strength and Failure Mode of Ceramic Implant Abutments After Chewing Simulation

    Get PDF
    The aim of this study was to compare titanium-reinforced ZrO2 and pure Al2O3 abutments regarding their outcome after chewing simulation and static loading. Forty-eight standard diameter implants with an external hexagon were divided into three groups of 16 implants each and restored with three different types of abutments (group A: ZrO2 abutments with titanium inserts; group B: densely sintered high-purity Al2O3 abutments; group C: titanium abutments). All abutments were fixated on the implants with gold-alloy screws at 32 Ncm torque, and metal crowns were adhesively cemented onto the abutments. The specimens were exposed to 1.2 million cycles in a chewing simulator. Surviving specimens were subsequently loaded until fracture in a static testing device. Fracture loads (N) and fracture modes were recorded. A Wilcoxon Rank test to compare fracture loads among the 3 groups and a Fisher exact test to detect group differences in fracture modes were used for statistical evaluation (

    A new human chromogranin A (CgA) immunoradiometric assay involving monoclonal antibodies raised against the unprocessed central domain (145-245)

    Get PDF
    Chromogranin A (CgA), a major protein of chromaffin granules, has been described as a potential marker for neuroendocrine tumours. Because of an extensive proteolysis which leads to a large heterogeneity of circulating fragments, its presence in blood has been assessed in most cases either by competitive immunoassays or with polyclonal antibodies. In the present study, 24 monoclonal antibodies were raised against native or recombinant human CgA. Their mapping with proteolytic peptides showed that they defined eight distinct epitopic groups which spanned two-thirds of the C-terminal part of human CgA. All monoclonal antibodies were tested by pair and compared with a reference radioimmunoassay (RIA) involving CGS06, one of the monoclonal antibodies against the 198–245 sequence. It appears that CgA C-terminal end seems to be highly affected by proteolysis and the association of C-terminal and median-part monoclonal antibodies is inadequate for total CgA assessment. Our new immunoradiometric assay involves two monoclonal antibodies, whose contiguous epitopes lie within the median 145–245 sequence. This assay allows a sensitive detection of total human CgA and correlates well with RIA because dibasic cleavage sites present in the central domain do not seem to be affected by degradation. It has been proved to be efficient in measuring CgA levels in patients with neuroendocrine tumours. © 1999 Cancer Research Campaig
    • …
    corecore