831 research outputs found

    Localization of Denaturation Bubbles in Random DNA Sequences

    Full text link
    We study the thermodynamic and dynamic behaviors of twist-induced denaturation bubbles in a long, stretched random sequence of DNA. The small bubbles associated with weak twist are delocalized. Above a threshold torque, the bubbles of several tens of bases or larger become preferentially localized to \AT-rich segments. In the localized regime, the bubbles exhibit ``aging'' and move around sub-diffusively with continuously varying dynamic exponents. These properties are derived using results of large-deviation theory together with scaling arguments, and are verified by Monte-Carlo simulations.Comment: TeX file with postscript figure

    Stretching Instability of Helical Spring

    Full text link
    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to step-like contraction and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure

    Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes

    Get PDF
    Mammalian interphase and mitotic cells were analyzed for their cation composition using a three-dimensional high resolution scanning ion microprobe. This instrument maps the distribution of bound and unbound cations by secondary ion mass spectrometry (SIMS). SIMS analysis of cryofractured interphase and mitotic cells revealed a cell cycle dynamics of Ca2+, Mg2+, Na+, and K+. Direct analytical images showed that all four, but no other cations, were detected on mitotic chromosomes. SIMS measurements of the total cation content for diploid chromosomes imply that one Ca2+ binds to every 12.5–20 nucleotides and one Mg2+ to every 20–30 nucleotides. Only Ca2+ was enriched at the chromosomal DNA axis and colocalized with topoisomerase IIα (Topo II) and scaffold protein II (ScII). Cells depleted of Ca2+ and Mg2+ showed partially decondensed chromosomes and a loss of Topo II and ScII, but not hCAP-C and histones. The Ca2+-induced inhibition of Topo II catalytic activity and direct binding of Ca2+ to Topo II by a fluorescent filter-binding assay supports a regulatory role of Ca2+ during mitosis in promoting solely the structural function of Topo II. Our study directly implicates Ca2+, Mg2+, Na+, and K+ in higher order chromosome structure through electrostatic neutralization and a functional interaction with nonhistone proteins

    Layering transitions for adsorbing polymers in poor solvents

    Full text link
    An infinite hierarchy of layering transitions exists for model polymers in solution under poor solvent or low temperatures and near an attractive surface. A flat histogram stochastic growth algorithm known as FlatPERM has been used on a self- and surface interacting self-avoiding walk model for lengths up to 256. The associated phases exist as stable equilibria for large though not infinite length polymers and break the conjectured Surface Attached Globule phase into a series of phases where a polymer exists in specified layer close to a surface. We provide a scaling theory for these phases and the first-order transitions between them.Comment: 4 pages, 4 figure

    Pulling a polymer out of a potential well and the mechanical unzipping of DNA

    Full text link
    Motivated by the experiments on DNA under torsion, we consider the problem of pulling a polymer out of a potential well by a force applied to one of its ends. If the force is less than a critical value, then the process is activated and has an activation energy proportinal to the length of the chain. Above this critical value, the process is barrierless and will occur spontaneously. We use the Rouse model for the description of the dynamics of the peeling out and study the average behaviour of the chain, by replacing the random noise by its mean. The resultant mean-field equation is a nonlinear diffusion equation and hence rather difficult to analyze. We use physical arguments to convert this in to a moving boundary value problem, which can then be solved exactly. The result is that the time tpot_{po} required to pull out a polymer of NN segments scales like N2N^2. For models other than the Rouse, we argue that tpoN1+νt_{po}\sim N^{1+\nu}Comment: 11 pages, 6 figures. To appear in PhysicalReview

    The antiparallel loops in gal DNA

    Get PDF
    Interactions between proteins bound to distant sites along a DNA molecule require bending and twisting deformations in the intervening DNA. In certain systems, the sterically allowed protein–DNA and protein–protein interactions are hypothesized to produce loops with distinct geometries that may also be thermodynamically and biologically distinct. For example, theoretical models of Gal repressor/HU-mediated DNA-looping suggest that the antiparallel DNA loops, A1 and A2, are thermodynamically quite different. They are also biologically different, since in experiments using DNA molecules engineered to form only one of the two loops, the A2 loop failed to repress in vitro transcription. Surprisingly, single molecule measurements show that both loop trajectories form and that they appear to be quite similar energetically and kinetically

    Pulling self-interacting polymers in two-dimensions

    Full text link
    We investigate a two-dimensional problem of an isolated self-interacting end-grafted polymer, pulled by one end. In the thermodynamic limit, we find that the model has only two different phases, namely a collapsed phase and a stretched phase. We show that the phase diagram obtained by Kumar {\it at al.\} [Phys. Rev. Lett. {\bf 98}, 128101 (2007)] for small systems, where differences between various statistical ensembles play an important role, differ from the phase diagram obtained here in the thermodynamic limit.Comment: 20 pages, 22 figure

    The Development of the Basal Ganglia in Capuchin Monkeys (\u3cem\u3eCebus apella\u3c/em\u3e)

    Get PDF
    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months-20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia
    corecore