124 research outputs found

    On the stratospheric chemistry of hydrogen cyanide

    Get PDF
    HCN profiles measured by solar occultation spectrometry during 10 balloon flights of the JPL MkIV instrument are presented. The HCN profiles reveal a compact correlation with stratospheric tracers. Calculations with a 2D-model using established rate coefficients for the reactions of HCN with OH and O(^1D) severely underestimate the measured HCN in the middle and upper stratosphere. The use of newly available rate coefficients for these reactions gives reasonable agreement of measured and modeled HCN. An HCN yield of ∼30% from the reaction of CH_3CN with OH is consistent with the measurements

    Evaluation of molecular descriptors for antitumor drugs with respect to noncovalent binding to DNA and antiproliferative activity

    Get PDF
    34 pages, 6 additional files, 5 tables, 4 figures.[Background ] Small molecules that bind reversibly to DNA are among the antitumor drugs currently used in chemotherapy. In the pursuit of a more rational approach to cancer chemotherapy based upon these molecules, it is necessary to exploit the interdependency between DNA-binding affinity, sequence selectivity and cytotoxicity. For drugs binding noncovalently to DNA, it is worth exploring whether molecular descriptors, such as their molecular weight or the number of potential hydrogen acceptors/donors, can account for their DNA-binding affinity and cytotoxicity.[Results] Fifteen antitumor agents, which are in clinical use or being evaluated as part of the National Cancer Institute’s drug screening effort, were analyzed in silico to assess the contribution of various molecular descriptors to their DNA-binding affinity, and the capacity of the descriptors and DNA-binding constants for predicting cell cytotoxicity. Equations to predict drug-DNA binding constants and growth-inhibitory concentrations were obtained by multiple regression following rigorous statistical procedures.[Conclusions] For drugs binding reversibly to DNA, both their strength of binding and their cytoxicity are fairly predicted from molecular descriptors by using multiple regression methods. The equations derived may be useful for rational drug design. The results obtained agree with that compounds more active across the National Cancer Institute’s 60-cell line data set tend to have common structural features.Supported by a grant from the former Spanish Ministry of Education and Science (BFU2007-60998) and the FEDER program of the European Community.Peer reviewe

    A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes

    Get PDF
    The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection
    corecore