56 research outputs found

    Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains

    Get PDF
    This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe

    Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca2+-induced conformational changes in the regulatory domain of human cardiac troponin C

    Get PDF
    AbstractTroponin C (TnC), a calcium-binding protein of the thin filament of muscle, plays a regulatory role in skeletal and cardiac muscle contraction. NMR reveals a small conformational change in the cardiac regulatory N-terminal domain of TnC (cNTnC) on binding of Ca2+ such that the total exposed hydrophobic surface area increases very slightly from 3090 ± 86 Å2 for apo-cNTnC to 3108 ± 71 Å2 for Ca2+-cNTnC. Here, we show that measurement of solvent accessibility for backbone amide protons by means of solution-phase hydrogen/deuterium (H/D) exchange followed by pepsin digestion, high-performance liquid chromatography, and electrospray ionization high-field (9.4 T) Fourier transform Ion cyclotron resonance mass spectrometry is sufficiently sensitive to detect such small ligand binding-induced conformational changes of that protein. The extent of deuterium incorporation increases significantly on binding of Ca2+ for each of four proteolytic segments derived from pepsin digestion of the apo- and Ca2+-saturated forms of cNTnC. The present results demonstrate that H/D exchange monitored by mass spectrometry can be sufficiently sensitive to detect and identify even very small conformational changes in proteins, and should therefore be especially informative for proteins too large (or too insoluble or otherwise intractable) for NMR analysis

    Solution Structure and Dynamics of the I214V Mutant of the Rabbit Prion Protein

    Get PDF
    Background: The conformational conversion of the host-derived cellular prion protein (PrP C) into the disease-associated scrapie isoform (PrP Sc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrP C s could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrP C (RaPrP C) and various mutants would be of great help to understand the ability of RaPrP C to be resistant to TSE agents. Methodology/Principal Findings: We determined the solution structure of the I214V mutant of RaPrP C (91–228) and detected the backbone dynamics of its structured C-terminal domain (121–228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement. Conclusions/Significance: Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints fo

    RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair

    No full text
    Summary: Ring1-YY1-binding protein (RYBP) is a member of the non-canonical polycomb repressive complex 1 (PRC1), and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF) domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs), we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR) repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP) inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding. : Ali et al. find that RYBP binds K63-linked ubiquitin chains and is removed from DNA damage sites. This K63-ubiquitin binding allows RYBP to hinder the recruitment of BRCA1 and Rad51 to DNA double-strand breaks, thus inhibiting homologous recombination repair. Accordingly, cancer cells expressing high RYBP are more sensitive to DNA-damaging therapies. Keywords: DNA damage response, homologous recombination, ubiquitylation, RYBP, polycomb proteins, double-strand break repair, chromatin, histone modificatio

    Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding.

    No full text
    Eotaxin is a member of the chemokine family of about 40 proteins that induce cell migration. Eotaxin binds the CC chemokine receptor CCR3 that is highly expressed by eosinophils, and it is considered important in the pathology of chronic respiratory disorders such as asthma. The high resolution structure of eotaxin is known. The 74 amino acid protein has two disulfide bridges and shows a typical chemokine fold comprised of a core of three antiparallel beta-strands and an overlying alpha-helix. In this paper, we report the backbone dynamics of eotaxin determined through 15N-T1, T2, and [1H]-15N nuclear Overhauser effect heteronuclear multidimensional NMR experiments. This is the first extensive study of the dynamics of a chemokine derived from 600, 500, and 300 MHz NMR field strengths. From the T1, T2, and NOE relaxation data, parameters that describe the internal motions of eotaxin were derived using the Lipari-Szabo model free analysis. The most ordered regions of the protein correspond to the known secondary structure elements. However, surrounding the core, the regions known to be functionally important in chemokines show a range of motions on varying timescales. These include extensive subnanosecond to picosecond motions in the N-terminus, C-terminus, and the N-loop succeeding the disulfides. Analysis of rotational diffusion anisotropy of eotaxin and chemical exchange terms at multiple fields also allowed the confident identification of slow conformational exchange through the "30s" loop, disulfides, and adjacent residues. In addition, we show that these motions may be attenuated in the dimeric form of a synthetic eotaxin. The structure and dynamical basis for eotaxin receptor binding is discussed in light of the dynamics data

    Effect of Temperature on the Structure of Trout Troponin C

    No full text
    Adaptation for life at different temperatures can cause changes in many aspects of an organism. One example is the expression of different protein isoforms in species adapted to different temperatures. The calcium regulatory protein cardiac troponin C (cTnC), from rainbow trout (Oncorhynchus mykiss), is a good model for studying temperature effects, both because of its low physiological temperature and because mammalian cTnC, extensively studied at higher temperatures, can be used for comparison. We determined the structure and studied the backbone dynamics of the regulatory domain of trout cardiac troponin C (ScNTnC) with one Ca2+ bound at 7 and 30 °C, using nuclear magnetic resonance spectroscopy (NMR). The overall fold of the regulatory domain of trout cTnC at both temperatures is similar to the regulatory domain of mammalian (human, bovine, and porcine isoform) cTnC bound to one Ca2+. By comparing the trout structures at the two temperatures, we identify differences between the positions of the helices flanking the calcium binding loops, and the overall structure at 7 °C is more compact than that at 30 °C. The structure at 7 °C is more similar to the mammalian cTnC, which was determined at 30 °C, indicating that they have the same conformation at their respective physiological temperatures. The dynamic properties of the regulatory domain of trout cTnC are similar at the two temperatures that were used in these studies
    • …
    corecore