3,790 research outputs found

    Food fraud: policy and food chain

    Get PDF
    Food supply chain fraud can arise in terms of the integrity of the food item, the processes used to produce that food item and/or the people employed and the data that accompanies the food item. Emergent food fraud themes include characterization of food fraud, drivers of supply chain fraud, traceability systems and mechanisms for deterrence. Options for action at global, supply chain and organizational levels are the ongoing development of data centralization systems especially ensuring that distinct databases can be coordinated to add value through collective data analysis, and secondly ensuring there are appropriate deterrence mechanisms in place so that food fraud mitigation moves from a stance of fraud detection to one of fraud prevention

    Food Fraud Vulnerability assessment: reliable data sources and effective assessment approaches

    Get PDF
    Abstract Multiple food fraud vulnerability assessment (FFVA) tools have been developed and refined to capture and quantify food fraud issues in the supply chain. The aim of this research is to review existing FFVA tools and the databases that underpin them and consider the challenges, limitations and opportunities in their use. The databases considered include: the Rapid Alert for Food and Feed Safety (RASFF) database, the Food Fraud Risk Information, Decernis Food Fraud Database, FoodSHIELD, and HorizonScan. Four FFVA tools, Safe Supply of Affordable Food Everywhere (SSAFE), the two Food Fraud Advisor’s vulnerability assessment tools and EMAlert, are also critiqued in this paper from the viewpoint of the tools available and their efficacy for food fraud vulnerability assessment

    Heuristic placement routines for two-dimensional bin packing problem.

    Get PDF
    Problem statement: Cutting and packing (C and P) problems are optimization problems that are concerned in finding a good arrangement of multiple small items into one or more larger objects. Bin packing problem is a type of C AND P problems. Bin packing problem is an important industrial problem where the general objective is to reduce the production costs by maximizing the utilization of the larger objects and minimizing the material used. Approach: In this study, we considered both oriented and non-oriented cases of Two-Dimensional Bin Packing Problem (2DBPP) where a given set of small rectangles (items), was packed without overlaps into a minimum number of identical large rectangles (bins). We proposed heuristic placement routines called the Improved Lowest Gap Fill, LGFi and LGFiOF for solving non-oriented and oriented cases of 2DBPP respectively. Extensive computational experiments using benchmark data sets collected from the literature were conducted to assess the effectiveness of the proposed routines. Results: The computational results were compared with some well known heuristic placement routines. The results showed that the LGFi and LGFiOF are competitive when compared with other heuristic placement routines. Conclusion: Both LGFi and LGFiOF produced better packing quality compared to other heuristic placement routines

    Magnetic tests for magnetosome chains in Martian meteorite ALH84001

    Get PDF
    Transmission electron microscopy studies have been used to argue that magnetite crystals in carbonate from Martian meteorite ALH84001 have a composition and morphology indistinguishable from that of magnetotactic bacteria. It has even been claimed from scanning electron microscopy imaging that some ALH84001 magnetite crystals are aligned in chains. Alignment of magnetosomes in chains is perhaps the most distinctive of the six crystallographic properties thought to be collectively unique to magnetofossils. Here we use three rock magnetic techniques, low-temperature cycling, the Moskowitz test, and ferromagnetic resonance, to sense the bulk composition and crystallography of millions of ALH84001 magnetite crystals. The magnetic data demonstrate that although the magnetite is unusually pure and fine-grained in a manner similar to terrestrial magnetofossils, most or all of the crystals are not arranged in chains

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page

    Reaper is regulated by IAP-mediated ubiquitination

    Get PDF
    In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance

    The Drosophila Caspase DRONC Cleaves following Glutamate or Aspartate and Is Regulated by DIAP1, HID, and GRIM

    Get PDF
    The caspase family of cysteine proteases plays important roles in bringing about apoptotic cell death. All caspases studied to date cleave substrates COOH-terminal to an aspartate. Here we show that the Drosophila caspase DRONC cleaves COOH-terminal to glutamate as well as aspartate. DRONC autoprocesses itself following a glutamate residue, but processes a second caspase, drICE, following an aspartate. DRONC prefers tetrapeptide substrates in which aliphatic amino acids are present at the P2 position, and the P1 residue can be either aspartate or glutamate. Expression of a dominant negative form of DRONC blocks cell death induced by the Drosophila cell death activators reaper, hid, and grim, and DRONC overexpression in flies promotes cell death. Furthermore, the Drosophila cell death inhibitor DIAP1 inhibits DRONC activity in yeast, and DIAP1's ability to inhibit DRONC-dependent yeast cell death is suppressed by HID and GRIM. These observations suggest that DRONC acts to promote cell death. However, DRONC activity is not suppressed by the caspase inhibitor and cell death suppressor baculovirus p35. We discuss possible models for DRONC function as a cell death inhibitor

    l2Match: Optimization Techniques on Subgraph Matching Algorithm using Label Pair, Neighboring Label Index, and Jump-Redo method

    Full text link
    Graph database is designed to store bidirectional relationships between objects and facilitate the traversal process to extract a subgraph. However, the subgraph matching process is an NP-Complete problem. Existing solutions to this problem usually employ a filter-and-verification framework and a divide-and-conquer method. The filter-and-verification framework minimizes the number of inputs to the verification stage by filtering and pruning invalid candidates as much as possible. Meanwhile, subgraph matching is performed on the substructure decomposed from the larger graph to yield partial embedding. Subsequently, the recursive traversal or set intersection technique combines the partial embedding into a complete subgraph. In this paper, we first present a comprehensive literature review of the state-of-the-art solutions. l2Match, a subgraph isomorphism algorithm for small queries utilizing a Label-Pair Index and filtering method, is then proposed and presented as a proof of concept. Empirical experimentation shows that l2Match outperforms related state-of-the-art solutions, and the proposed methods optimize the existing algorithms.Comment: This short version of this article (6 pages) is accepted by ICEIC 202

    Interfacial Reactions of Ozone with Surfactant Protein B in a Model Lung Surfactant System

    Get PDF
    Oxidative stresses from irritants such as hydrogen peroxide and ozone (O_3) can cause dysfunction of the pulmonary surfactant (PS) layer in the human lung, resulting in chronic diseases of the respiratory tract. For identification of structural changes of pulmonary surfactant protein B (SP-B) due to the heterogeneous reaction with O_3, field-induced droplet ionization (FIDI) mass spectrometry has been utilized. FIDI is a soft ionization method in which ions are extracted from the surface of microliter-volume droplets. We report structurally specific oxidative changes of SP-B_(1−25) (a shortened version of human SP-B) at the air−liquid interface. We also present studies of the interfacial oxidation of SP-B_(1−25) in a nonionizable 1-palmitoyl-2-oleoyl-sn-glycerol (POG) surfactant layer as a model PS system, where competitive oxidation of the two components is observed. Our results indicate that the heterogeneous reaction of SP-B_(1−25) at the interface is quite different from that in the solution phase. In comparison with the nearly complete homogeneous oxidation of SP-B_(1−25), only a subset of the amino acids known to react with ozone are oxidized by direct ozonolysis in the hydrophobic interfacial environment, both with and without the lipid surfactant layer. Combining these experimental observations with the results of molecular dynamics simulations provides an improved understanding of the interfacial structure and chemistry of a model lung surfactant system subjected to oxidative stress
    corecore