3,467 research outputs found

    Unique vortex and stripe domain structures in PbTiO 3 epitaxial nanodots

    Get PDF
    The domain structures of PbTiO 3 epitaxial nanodots under the influences of depolarization fields and mismatch strains have been studied using three dimensional phase field simulations. The single-vortex structure and mixed domain configuration, which consisted of zigzag stripe domain and closure dipole flux near the interfaces, were found to be effective in annihilating the depolarization fields in the isotropically tensile and compressive ferroelectric nanodots, respectively. These domain structures were produced by the combined effect of electrostatic and mismatch elastic energies. The width of stripe domain was found to be related to the volume percentage of polarization dipoles along the z-axis, which varied remarkably with the change of compressive mismatch strain. In the case of nanodots under anisotropic mismatch strains, double-vortex domain patterns and stripe domains with nearly straight domain walls were formed. Moreover, the domain structures with electrostatic energy neglected were also studied. © 2011 Elsevier Ltd. All rights reserved.postprin

    Effects of film thickness and mismatch strains on magnetoelectric coupling in vertical heteroepitaxial nanocomposite thin films

    Get PDF
    The phase field model is adopted to study the magnetoelectric coupling effects in vertical heteroepitaxial nanocomposite thin films. Both the lateral epitaxial strains between the film and the substrate and the vertical epitaxial strains between the ferroelectric and ferromagnetic phases are accounted for in the model devised. The effects of the film thickness on the magnetic-field- induced electric polarization (MIEP) are investigated. The results obtained show that the MIEP is strongly dependent on the film thickness, as well as on the vertical and lateral epitaxial strains. © 2011 American Institute of Physics.published_or_final_versio

    A reorganized innovation approach to linear estimation

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Interaction of O vacancies and domain structures in single crystal BaTi O3: Two-dimensional ferroelectric model

    Get PDF
    Two-dimensional simulations on the interactions of oxygen vacancies and different domain structures in barium titanate single crystal were carried out using the phase field method. The evolution of the spontaneous polarizations and oxygen vacancies was coupled through Maxwell's equation. The results showed that two barriers near the electrodes existed in both the 90°and 180°domain structures. It has also been observed that while an intrinsic electrostatic potential drop across the 90°domain wall created the electric fields which drove the electrons and oxygen vacancies aggregate on the different sides of the domain wall, the 180°domain wall had insignificant interaction with the potential, and no electron or vacancy accumulation in 180°domain structure was observed. Polarization charge density is believed to be the origin of this difference. © 2008 The American Physical Society.published_or_final_versio

    Experimental Polarization State Tomography using Optimal Polarimeters

    Full text link
    We report on the experimental implementation of a polarimeter based on a scheme known to be optimal for obtaining the polarization vector of ensembles of spin-1/2 quantum systems, and the alignment procedure for this polarimeter is discussed. We also show how to use this polarimeter to estimate the polarization state for identically prepared ensembles of single photons and photon pairs and extend the method to obtain the density matrix for generic multi-photon states. State reconstruction and performance of the polarimeter is illustrated by actual measurements on identically prepared ensembles of single photons and polarization entangled photon pairs

    Mesoscale magnetism at the grain boundaries in colossal magnetoresistive films

    Full text link
    We report the discovery of mesoscale regions with distinctive magnetic properties in epitaxial La1x_{1-x}Srx_{x}MnO3_{3} films which exhibit tunneling-like magnetoresistance across grain boundaries. By using temperature-dependent magnetic force microscopy we observe that the mesoscale regions are formed near the grain boundaries and have a different Curie temperature (up to 20 K {\it higher}) than the grain interiors. Our images provide direct evidence for previous speculations that the grain boundaries in thin films are not magnetically and electronically sharp interfaces. The size of the mesoscale regions varies with temperature and nature of the underlying defect.Comment: 4 pages of text, 4 figure

    Remarks on Renormalization of Black Hole Entropy

    Full text link
    We elaborate the renormalization process of entropy of a nonextremal and an extremal Reissner-Nordstr\"{o}m black hole by using the Pauli-Villars regularization method, in which the regulator fields obey either the Bose-Einstein or Fermi-Dirac distribution depending on their spin-statistics. The black hole entropy involves only two renormalization constants. We also discuss the entropy and temperature of the extremal black hole.Comment: 14 pages, revtex, no figure

    High-Field Electrical Transport in Single-Wall Carbon Nanotubes

    Full text link
    Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10^9 A/cm^2. As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can be explained by considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high field.Comment: 4 pages, 3 eps figure
    corecore