278 research outputs found
Low cost, formable, high T(sub c) superconducting wire
A ceramic superconductivity part such as a wire is produced through the partial oxidation of a specially formulated copper alloy in the core. The alloys contain low level quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperature, superconducting oxide phases are formed as a thin film
The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl
The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys
Fused silicon-rich coatings for superalloys
Various compositions of nickel-silicon and aluminum-silicon slurries were sprayed on IN 100 specimens and fusion-sintered to form fully dense coatings. Cyclic furnace oxidation tests in 1 atm air at 1100 C showed all the coatings to be protective for at least 600 hours, and one slurry, Al-60Si, was protective for 1000 hours. This coating also protected NASA TAZ 8A and NASA-TRW VIA for 1000 hours in the same furnace test. Alloys B 1900, TD-NiCr, and Mar-M200 were protected for lesser times, while NX 188 and NASA WAZ 20 were scarcely protected at all. Limited stress-rupture testing on 0.64-cm-diam IN 100 specimens detected no degradation of mechanical properties due to silicon diffusion
The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils
Recent operations in the Persian Gulf have exposed military helicopter turbines to excessive amounts of ingested sand. Fine particles, less than 10 microns, are able to bypass the particle separators and enter the cooling and combustion systems. The initial sand chemistry varies by location, but is made up of a calcium aluminum silicate glass, SiO2 low quartz (Ca,Mg) CO3 dolomite, CaCO3 calcite, and occasionally CaCl rocksalt. The sand reacts in the hot combustion gases and deposits onto the turbine vanes as CaSO4, glass, and various crystalline silicates. Deposits up to 0.25 in. thick have been collected. Although cooling hole plugging is a considerable problem, excessive corrosion is not commonly observed due to the high melting point of GaSO4
Method of forming low cost, formable High T(subc) superconducting wire
A ceramic superconductivity part, such as a wire, is produced through the partial oxidation of a specially formulated copper alloy in a core. The alloys contains low level of quantities of rare earth and alkaline earth dopant elements. Upon oxidation at high temperatures, and superconducting oxide phases are formed as a thin film
Oxidation behavior of FeAl+Hf,Zr,B
The oxidation behavior of Fe-40Al-1Hf, Fe-40Al-1Hf-0.4B, and Fe-40Al-0.1Zr-0.4B (at. percent) alloys was characterized after 900, 1000, and 100 C exposures. Isothermal tests revealed parabolic kinetics after a period of transitional theta-alumina scale growth. The parabolic growth rates for the subsequent alpha-alumina scales were about five times higher than those for NiAl+0.1Zr alloys. The isothermally grown scales showed a propensity toward massive scale spallation due to both extensive rumpling from growth stresses and to an inner layer of HfO2. Cyclic oxidation for 200 1-hr cycles produced little degradation at 900 or 1000 C, but caused significant spallation at 1100 C in the form of small segments of the outer scale. The major difference in the cyclic oxidation of the three FeAl alloys was increased initial spallation for FeAl+Zr,B. Although these FeAl alloys showed many similarities to NiAl alloys, they were generally less oxidation resistant. It is believed that this resulted from nonoptimal levels of dopants and larger thermal expansion mismatch stresses
Current viewpoints on oxide adherence mechanisms
Additional hot stage Auger experiments have provided surface segregation data for NiCrAl + or - Y or Zr alloys in agreement with other investigations. This data, combined with experimental and theoretical evidence of the Al2O3-metal bond strength, is presented in support of a chemical mechanism of Al2O3 scale adhesion. Both the detrimental effects of sulfur segregation and the beneficial effects of dopant segregation may be important. Chemical features of the dopants are compared in light of these proposed mechanisms, namely delta H sub f (sulfide), delta H sub f (oxide), electron orbital configuration, and insolubility in Ni
Mechanism of strength degradation for hot corrosion of alpha-SiC
Sintered alpha SiC was corroded by thin films of Na2SO4 and Na2CO3 molten salts at 1000%. This hot corrosion attack reduced room temperature strengths by as much as 50%. Strength degradation was porportional to the degree and uniformity of corrosion pitting attack as controlled by the chemistry of the molten salt. Extensive fractography identified corrosion pits as the most prevalent source of failure. A fracture mechanics treatment of the strength/pit depth relationship produced an average K sub IC equal to 2.6 MPa sub m 1/2, which is consistent with published values
Effects of diffusion on aluminum depletion and degradation of NiAl coatings
Experiments were performed to critically demonstrate the effects of diffusion on the aluminum depletion and degradation of NiAl coatings on superalloys. Pack aluminized IN 100 and Mar-M200 were diffusion annealed in 0.0005 torr vacuum at 1100 C for 300 hours. Aluminum losses due to oxidation and vaporization were minimal. Metallographic and electron microprobe analyses showed considerable interdiffusion of the coating with the substrate, which caused a large decrease in the original aluminum level of the coating. Subsequent cyclic furnace oxidation tests were performed at 1100 C using 1 hour cycles on pre-diffused and as-coated specimens. The pre-diffusion treatment decreased the oxidation protection for both alloys, but more dramatically for IN 100. Identical oxidation tests of bulk NiAl, where such diffusion effects are precluded, showed no signs of degradation at twice the time needed to degrade the coated superalloys
Moisture-Induced TBC Spallation on Turbine Blade Samples
Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked
- …