19,244 research outputs found

    Spinodal decomposition: An alternate mechanism of phase conversion

    Full text link
    The scenario of homogeneous nucleation is investigated for a first order quark-hadron phase transition in a rapidly expanding background of quark gluon plasma. It is found that significant supercooling is possible before hadronization begins. This study also suggests that spinodal decomposition competes with nucleation and may provide an alternative mechanism for phase conversion.Comment: LaTeX, 4 pages with 3 Postscript figures. Talk given at International Conference on Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP 2001), Nov. 26-30, 2001, Jaipur, Indi

    Nonlinear interaction between three inertial Alfv\'{e}n waves

    Get PDF
    The resonant coupling between Alfv\'{e}n waves is reconsidered. New results are found for cold plasmas there temperature effects are negligible.Comment: To appear in J. Plasma Phy

    Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas

    Full text link
    The filamentation instability driven by two spatially uniform and counter-streaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the electrons of one beam and the positrons of the second beam match. The simulation demonstrates that as a result no electrostatic field is generated by the magnetic field through its magnetic pressure gradient prior to its saturation. This electrostatic field would be repulsive at the centres of the filaments and limit the maximum charge and current density. The filaments of electrons and positrons in this simulation reach higher charge and current densities than in one with no positrons. The oscillations of the magnetic field strength induced by the magnetically trapped particles result in an oscillatory magnetic pressure gradient force. The latter interplays with the statistical fluctuations in the particle density and it probably enforces a charge separation, by which electrostatic waves grow after the filamentation instability has saturated.Comment: 13 pages, 8 figure

    Gauge transformation through an accelerated frame of reference

    Full text link
    The Schr\"{o}dinger equation of a charged particle in a uniform electric field can be specified in either a time-independent or a time-dependent gauge. The wave-function solutions in these two gauges are related by a phase-factor reflecting the gauge symmetry of the problem. In this article we show that the effect of such a gauge transformation connecting the two wave-functions can be mimicked by the effect of two successive extended Galilean transformations connecting the two wave-function. An extended Galilean transformation connects two reference frames out of which one is accelerating with respect to the other.Comment: 7 Pages, Latex fil

    Metal-insulator transitions in tetrahedral semiconductors under lattice change

    Full text link
    Although most insulators are expected to undergo insulator to metal transition on lattice compression, tetrahedral semiconductors Si, GaAs and InSb can become metallic on compression as well as by expansion. We focus on the transition by expansion which is rather peculiar; in all cases the direct gap at Γ\Gamma point closes on expansion and thereafter a zero-gap state persists over a wide range of lattice constant. The solids become metallic at an expansion of 13 % to 15 % when an electron fermi surface around L-point and a hole fermi surface at Γ\Gamma-point develop. We provide an understanding of this behavior in terms of arguments based on symmetry and simple tight-binding considerations. We also report results on the critical behavior of conductivity in the metal phase and the static dielectric constant in the insulating phase and find common behaviour. We consider the possibility of excitonic phases and distortions which might intervene between insulating and metallic phases.Comment: 12 pages, 8 figure

    Large-amplitude Electron Oscillations in a Plasma Slab

    Full text link
    Nonlinear oscillations within a plasma slab are analyzed. Two types of solutions are found, depending on the initial value of the electron density. The first represents regular oscillations within the plasma slab, while the second gives rise to explosive growth at the slab centre or at the edges. The results are discussed.Comment: 5 pages, 4 figures, to appear in Journal of Plasma Physic

    Envelope solitons induced by high-order effects of light-plasma interaction

    Full text link
    The nonlinear coupling between the light beams and non-resonant ion density perturbations in a plasma is considered, taking into account the relativistic particle mass increase and the light beam ponderomotive force. A pair of equations comprising a nonlinear Schrodinger equation for the light beams and a driven (by the light beam pressure) ion-acoustic wave response is derived. It is shown that the stationary solutions of the nonlinear equations can be represented in the form of a bright and dark/gray soliton for one-dimensional problem. We have also present a numerical analysis which shows that our bright soliton solutions are stable exclusively for the values of the parameters compatible with of our theory.Comment: 9 pages, 5 figure

    Magnetosonic solitons in a dusty plasma slab

    Full text link
    The existence of magnetosonic solitons in dusty plasmas is investigated. The nonlinear magnetohydrodynamic equations for a warm dusty magnetoplasma are thus derived. A solution of the nonlinear equations is presented. It is shown that, due to the presence of dust, static structures are allowed. This is in sharp contrast to the formation of the so called shocklets in usual magnetoplasmas. A comparatively small number of dust particles can thus drastically alter the behavior of the nonlinear structures in magnetized plasmas.Comment: 7 pages, 6 figure
    corecore