525 research outputs found

    A generalized structure of Bell inequalities for bipartite arbitrary dimensional systems

    Full text link
    We propose a generalized structure of Bell inequalities for arbitrary d-dimensional bipartite systems, which includes the existing two types of Bell inequalities introduced by Collins-Gisin-Linden-Massar-Popescu [Phys. Rev. Lett. 88, 040404 (2002)] and Son-Lee-Kim [Phys. Rev. Lett. 96, 060406 (2006)]. We analyze Bell inequalities in terms of correlation functions and joint probabilities, and show that the coefficients of correlation functions and those of joint probabilities are in Fourier transform relations. We finally show that the coefficients in the generalized structure determine the characteristics of quantum violation and tightness.Comment: 6 pages, 1 figur

    Bell inequality for pairs of particle-number-superselection-rule restricted states

    Full text link
    Proposals for Bell inequality tests on systems restricted by superselection rules often require operations that are difficult to implement in practice. In this paper, we derive a new Bell inequality, where pairs of states are used to by-pass the superselection rule. In particular, we focus on mode entanglement of an arbitrary number of massive particles and show that our Bell inequality detects the entanglement in the pair when other inequalities fail. However, as the number of particles in the system increases, the violation of our Bell inequality decreases due to the restriction in the measurement space caused by the superselection rule. This Bell test can be implemented using techniques that are routinely used in current experiments.Comment: 9 pages, 6 figures; v2 is the published versio

    Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement

    Full text link
    We propose a Bell inequality for high-dimensional bipartite systems obtained by binning local measurement outcomes and show that it is tight. We find a binning method for even d-dimensional measurement outcomes for which this Bell inequality is maximally violated by maximally entangled states. Furthermore, we demonstrate that the Bell inequality is applicable to continuous variable systems and yields strong violations for two-mode squeezed states.Comment: 4+ pages, 2 figures; published versio

    Adjuvant chemotherapy and survival among patients 70 years of age and younger with node-negative breast cancer and the 21-gene recurrence score of 26-30

    Get PDF
    BACKGROUND: The benefits of chemotherapy in node-negative, hormone receptor-positive, and human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients with the 21-gene recurrence score (RS) of 18-30, particularly those with RS 26-30, are not known. METHODS: Using the Surveillance, Epidemiology, and End Results (SEER) data, we retrospectively identified 29,137 breast cancer patients with the 21-gene RS of 18-30 diagnosed between 2004 and 2015. Mortality risks according to the RS and chemotherapy use were compared by the Kaplan-Meier method and Cox\u27s proportional hazards model. RESULTS: Among the breast cancer patients with the RS 18-30, 21% of them had RS 26-30. Compared to breast cancer patients with RS 18-25, patients with RS 26-30 had more aggressive tumor characteristics and chemotherapy use and increased risk of breast cancer-specific mortality and overall mortality. In breast cancer patients who were aged ≤ 70 years and had RS of 26-30, chemotherapy administration was associated with a 32% lower risk of breast cancer-specific mortality (hazard ratio [HR], 0.68; 95% confidence interval [CI], 0.47-0.99) and a 42% lower risk of overall mortality (HR, 0.58; 95% CI, 0.44-0.76). Survival benefits were most pronounced in breast cancer patients who were younger or had grade III tumor. CONCLUSIONS: The 21-gene RS of 18-30 showed heterogeneous outcomes, and the RS 26-30 was a significant prognostic factor for an increased risk of mortality. Adjuvant chemotherapy could improve the survival of node-negative, hormone receptor-positive, and HER2-negative breast cancer patients with the 21-gene RS 26-30 and should be considered for patients, especially younger patients or patients with high-grade tumors

    The cap-snatching SFTSV endonuclease domain is an antiviral target

    Get PDF
    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with 12%-30% case mortality rates and is related to the Heartland virus (HRTV) identified in the United States. Together, SFTSV and HRTV are emerging segmented, negative-sense RNA viral (sNSV) pathogens with potential global health impact. Here, we characterize the amino-terminal cap-snatching endonuclease domain of SFTSV polymerase (L) and solve a 2.4-Å X-ray crystal structure. While the overall structure is similar to those of other cap-snatching sNSV endonucleases, differences near the C terminus of the SFTSV endonuclease suggest divergence in regulation. Influenza virus endonuclease inhibitors, including the US Food and Drug Administration (FDA) approved Baloxavir (BXA), inhibit the endonuclease activity in in vitro enzymatic assays and in cell-based studies. BXA displays potent activity with a half maximal inhibitory concentration (I

    Microstructure and biodegradation performance of Mg–4Ca–1Zn based alloys after ultrasonic treatment and doping with nanodiamonds for biomedical applications

    Get PDF
    This work aims to study microstructural features, phase composition, topology, surface potential, and the biodegradation performance of Mg–4Zn–1Ca-based alloys whose melts were ultrasonically (US) treated and doped with nanodiamonds (ND). The findings show a correlation between the ratio of the secondary phase segregated along the grain boundaries and the biodegradation rate in the RPMI-1640 synthetic culture medium. The fewer Ca2Mg6Zn3 phase fraction, the lower the biodegradation rate. Also, ND doping does not significantly affect the biodegradation rate. Intriguingly, the latter in the US-treated alloy was found to be noticeably inhibited due to a smoother topography and the presence of the fewest Ca2Mg6Zn3 phase fraction segregated along the grain boundaries. Further studies are needed to assess the biodegradable potential of the ND doped alloy, which melt was ultrasonically treated

    Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers

    Get PDF
    Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that a chronic increase of the cytosolic calcium concentration in hepatocytes during obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome–lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than 30 years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients. DOI: 10.1038/ncomms5834

    Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers

    Get PDF
    Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that a chronic increase of the cytosolic calcium concentration in hepatocytes during obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome–lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than 30 years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients. DOI: 10.1038/ncomms5834

    Clinical courses after administration of oral corticosteroids in patients with severely cholestatic acute hepatitis A; three cases

    Get PDF
    Acute hepatitis A is currently outbreaking in Korea. Although prognosis of acute hepatitis A is generally favorable, a minority of patients are accompanied by fatal complications. Severe cholestasis is one of the important causes of prolonged hospitalization in patients with acute hepatitis A. In such cases, higher chances of additional complications and increased medical costs are inevitable. We report three cases of severely cholestatic hepatitis A, who showed favorable responses to oral corticosteroids. Thirty milligram of prednisolone was initiated and tapered according to the responses. Rapid improvement was observed in all cases without side effects. We suggest that corticosteroid administration can be useful in hepatitis A patients with severe cholestasis who do not show improvement by conservative managements. Clinical trial will be needed to evaluate effectiveness of corticosteroids in these patients

    Field Emission of ITO-Coated Vertically Aligned Nanowire Array

    Get PDF
    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope
    corecore