606 research outputs found

    High-level synthesis design of scalable ultrafast ultrasound beamformer with single FPGA

    Full text link
    Ultrafast ultrasound imaging is essential for advanced ultrasound imaging techniques such as ultrasound localization microscopy (ULM) and functional ultrasound (fUS). Current ultrafast ultrasound imaging is challenged by the ultrahigh data bandwidth associated with the radio frequency (RF) signal, and by the latency of the computationally expensive beamforming process. As such, continuous ultrafast data acquisition and beamforming remain elusive with existing software beamformers based on CPUs or GPUs. To address these challenges, the proposed work introduces a novel method of implementing an ultrafast ultrasound beamformer specifically for ultrafast plane wave imaging (PWI) on a field programmable gate array (FPGA) by using high-level synthesis. A parallelized implementation of the beamformer on a single FPGA was proposed by 1) utilizing a delay compression technique to reduce the delay profile size, which enables both run-time pre-calculated delay profile loading from external memory and delay reuse 2) vectorizing channel data fetching which is enabled by delay reuse, and 3) using fixed summing networks to reduce consumption of logic resources. Our proposed method presents two unique advantages over current FPGA beamformers: 1) high scalability that allows fast adaptation to different FPGA resources and beamforming speed demands by using Xilinx High-Level Synthesis as the development tool, and 2) allow a compact form factor design by using a single FPGA to complete the beamforming instead of multiple FPGAs. With the proposed method, a sustainable average beamforming rate of 4.83 G samples/second in terms of input raw RF sample was achieved. The resulting image quality of the proposed beamformer was compared with the software beamformer on the Verasonics Vantage system for both phantom imaging and in vivo imaging of a mouse brain

    Activity in deep intermediate layer collicular neurons during interrupted saccades

    Get PDF
    Abstract The activity of neurons located in the deep intermediate and adjacent deep layers (hereafter called just deep intermediate layer neurons) of the superior colliculus (SC) in monkeys was recorded during saccades interrupted by electrical stimulation of the brainstem omnipause neuron (OPN) region. The goal of the experiment was to determine if these neurons maintained their discharge during the saccadic interruption, and, thus, could potentially provide a memory trace for the intended movement which ends accurately on target in spite of the perturbation. The collicular neurons recorded in the present study were located in the rostral three-fifths of the colliculus. Most of these cells tended to show considerable presaccadic activity during a delayed saccade paradigm, and, therefore, probably overlap with the population of SC cells called buildup neurons or prelude bursters in previous studies. The effect of electrical stimulation in the OPN region (which interrupted ongoing saccades) on the discharge of these neurons was measured by computing the percentage reduction in a cell's activity compared to that present during non-interrupted saccades. During saccade interruption about 70% of deep intermediate layer neurons experienced a major reduction (30% or greater) in their activity, but discharge recovered quickly after the termination of the stimulation as the eyes resumed their movement to finish the saccade on the target. Therefore, the pattern of activity recorded in most of the deep intermediate layer neurons during interrupted saccades qualitatively resembled that previously reported for the saccade-related burst neurons which tend to be located more dorsally in the intermediate layer. In contrast, some of our cells (30%) showed little or no perturbation in their activity caused by the saccade interrupting stimulation. Because all the more dorsally located burst neurons and the majority of our deep intermediate layer neurons show a total or major suppression in their discharge during interrupted saccades, it seems unlikely that the colliculus by itself could maintain an accurate memory of the desired saccadic goal or the remaining dynamic motor error required to account for the accuracy of the resumed movement which occurs following the interruption. However, it remains possible that the smaller proportion of our neurons whose activity was not perturbed during interrupted movements could play a role in the mechanisms underlying saccade accuracy in the interrupted saccade paradigm. Interrupted saccades have longer durations than normal saccades to the same target. Therefore, we investigated whether the discharge of our deeper collicular cells was also necessarily prolonged during interrupted saccades, and, if so, how the prolongation compared to the prolongation of the saccade. Sixty percent of our sample neurons showed a prolongation in discharge that was approximately the same as the prolongation in saccade duration (difference <15 ms in magnitude). The observation that temporal discharge in our neurons was perturbed to roughly match saccadic temporal perturbation suggests that dynamic feedback about ongoing saccadic motion is provided to the colliculus, but does not necessarily imply that this structure is the site responsible for the computation of dynamic motor error

    E-grocery challenges and remedies: Global market leaders perspective

    Get PDF
    The purpose of the study is to identify logistic elements germane to e-grocery businesses, and to reveal the challenges collateral with each logistic element. Further, it strives to create a better understanding of specific remedies that have been employed by top e-grocery retailers to overcome existing challenges while aligning identified challenges with Turban’s framework. Extensive semi-structured interviews were conducted with management staff in three of the top ten global online grocery retailers and another that was a market leader in a European country. The qualitative data collected was transcribed and coded using a non-hierarchical axial coding to identify emerging themes in content analysis. The results expose a range of challenges that could be compartmentalised into three broad categories, in harmony with the different stages of the order fulfilment process. Interestingly, the study found that most challenges were operational rather than tactical or strategic in nature. While the study expands existing knowledge, its revelation that most challenges lie in the management of roles and responsibilities domain is instructive. This makes it imperative for practitioners to focus on this specific area if meaningful improvement in e-grocery retailing performance is to be realised. This research offers a systematic understanding of supply and distribution challenges, including remedies utilised to ameliorate the effect of the challenges from the perspectives of the top companies in the industry. These remedies can be invaluable for existing and emerging e-grocers

    Media Management Tools: UK broadcast media executives’ perspective

    Get PDF
    The UK broadcast media landscape provides an interesting context to understand and explore the competitive dynamics of media organisations’. As an industry characterised by uncertainty and turbulence, this paper considers the process by which broadcast media organisations develop their strategies and the type of analytical tools that they use to underpin this process. This paper presents the findings of a survey of UK broadcast media executives and their views on the outlook for the UK Media Industry; the influence that the competitive environment has on developing media strategy; and the management tools that they use and their levels of satisfaction with these tools. It concludes that UK broadcast media is a competitive and turbulent environment, and that media strategy is developed using a number of media management tools that have varying degrees of success in terms of helping broadcast media executives to manage their media organisations’ in uncertain and complex conditions

    Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses

    Get PDF
    Rod/cone photoreceptors of the outer retina and the melanopsin-expressing retinal ganglion cells (mRGCs) of the inner retina mediate non-image forming visual responses including entrainment of the circadian clock to the ambient light, the pupillary light reflex (PLR), and light modulation of activity. Targeted deletion of the melanopsin gene attenuates these adaptive responses with no apparent change in the development and morphology of the mRGCs. Comprehensive identification of mRGCs and knowledge of their specific roles in image-forming and non-image forming photoresponses are currently lacking. We used a Cre-dependent GFP expression strategy in mice to genetically label the mRGCs. This revealed that only a subset of mRGCs express enough immunocytochemically detectable levels of melanopsin. We also used a Cre-inducible diphtheria toxin receptor (iDTR) expression approach to express the DTR in mRGCs. mRGCs develop normally, but can be acutely ablated upon diphtheria toxin administration. The mRGC-ablated mice exhibited normal outer retinal function. However, they completely lacked non-image forming visual responses such as circadian photoentrainment, light modulation of activity, and PLR. These results point to the mRGCs as the site of functional integration of the rod/cone and melanopsin phototransduction pathways and as the primary anatomical site for the divergence of image-forming and non-image forming photoresponses in mammals

    Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes

    Get PDF
    Abstract Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.</p

    The influence of online resources on student–lecturer relationship in higher education: a comparison study

    Get PDF
    The internet has become a key resource for students’ higher education studies due to both its availability and currency. Previously within higher education, lectures, books and course materials were the only sources of information. This change, to more open access to information and more online materials being accessed outside of those provided by lecturers, and indeed institutions, is likely to accelerate and change the way students are learning. This study aims to help institutions understand better the impact of these changes on the student–lecturer relationship by exploring students’ perceptions of their studies in terms of power and students’ academic engagement in the classroom. The importance of the internet (online learning resources) to students’ achievements, the importance of lecturers and the student–lecturer relationship have all been widely investigated. However, limited research has been undertaken examining the impact of students’ use of the internet on the student–lecturer relationship, or comparing this across different countries and cultures. To address this, data were collected via semi- structured questionnaires distributed to undergraduate students from three countries: United Kingdom, Saudi Arabia and Kenya. Quantitative data were analysed using a simple statistical analysis approach and qualitative data were analysed using a thematic analysis approach. The results showed that students’ use of the internet has improved students’ academic self-confidence, academic self-reliance and student– lecturer connectedness, but students’ use of the internet has increased the gap in the student–lecturer expert relationship and referent relationship. The impact and rea- sons for this differed between the countries involved in this study
    corecore