9,881 research outputs found
Hydrologic Properties of Subarctic Organic Soils
Completion Report
for
U. S. Forest Service
Institute of Northern Forestry
Cooperative Agreement No. 16 USC 581; 581a-581iThe need for understanding the natural system and how it responds
to various stresses is important; this is especially so in an environment
where the climate not only sustains permafrost, but develops
massive seasonal frost as well. Consequently, the role of the shallow
surface organic layer is also quite important. Since a slight change in
the soil thermal regime may bring about a phase change in the water or
ice, therefore, the system response to surface alterations such as
burning can be quite severe. The need for a better understanding of the
behavior and properties of the organic layer is, therefore, accentuated.
The central theme of this study was the examination of the hydrologic
and hydraulic properties of subarctic organic soils. Summarized
in this paper are the results of three aspects of subarctic organic soil
examinations conducted during the duration of the project. First, a
field site was set up in Washington Creek with the major emphasis on
measuring numerous variables of that soil system during the summer. The
greatest variations in moisture content occur in the thick organic soils
that exist at this site. Our major emphasis was to study the soil
moisture levels in these soils. This topic is covered in the first
major section, including associated laboratory studies. Those laboratory
studies include investigations of several hydraulic and hydrologic
properties of taiga organic and mineral soils. Second, some field data
on organic moisture levels was collected at the site of prescribed burns
in Washington Creek to ascertain the sustainability of fires as a function
of moisture levels. This portion of the study is described under the
second major heading. The last element of this study was a continued
application of the two-dimensional flow model that was developed in an
earlier study funded by the U. S. Forest Service, Institute of Northern
Forestry, and reported by Kane, Luthin, and Taylor (1975a).
Many of the results and concepts gathered in the field work were
integrated into the modeling effort, which is aimed at producing better
estimates of the hydrologic effects of surface disturbances in the black
spruce taiga subarctic ecosystem. This knowledge should also contribute
to better fire management decisions of the same system.The work upon which this report is based was made possible by a
cooperative aid agreement funded by the U. S. Forest Service, Institute
of Northern Forestry, Fairbanks, Alaska. Contribution to this study was
also made by Ohio State University
Non-linear properties of supercooled liquids in the system Na2O---SiO2
The physical properties, viscosity, density, heat capacity and thermal expansivity, of relaxed supercooled liquids in the temperature range just above the glass transition have been determined for ten compositions along the compositional binary Na2O---SiO2, in the range of 2–45 mole% Na2O, by a combination of scanning calorimetry, dilatometry and micropenetration viscometry. The viscosity, density, heat capacity and thermal expansivity in the glassy state have also been determined.
The heat capacities illustrate a linear composition dependence for the glassy state and a smooth but strongly non-linear composition dependence for the supercooled liquid state. The thermal expansivities were determined by dilatometry up to the glass transition and, by a normalized comparison of relaxation behavior in the glass transition interval, to temperatures 50°C above the glass transition. The expansivity is a linear function of the molar composition in the glass but a strongly non-linear function of molar composition in the supercooled liquid.
The viscosity data just above the glass transition temperature, combined with data from high temperature using the concentric cylinder method, illustrate that the composition dependence of viscosity is strongly non-linear and exhibits an inflection as a function of composition. The glass transition temperature, taken as the peak temperature of the calorimetric measurements, is not in general an isokom in this system.
The data for these property determinations in the Na2O---SiO2 system provide much improved constraints on the partial molar properties of SiO2 liquid and partial molar properties of the SiO2 component in silicate melts. The complex behavior of the transport properties, i.e. the glass transition temperature and the viscosity, point to complexities in viscous flow beyond that of simple binary mixing of the Na2O and SiO2 components
Efficiency of autonomous soft nano-machines at maximum power
We consider nano-sized artificial or biological machines working in steady
state enforced by imposing non-equilibrium concentrations of solutes or by
applying external forces, torques or electric fields. For unicyclic and
strongly coupled multicyclic machines, efficiency at maximum power is not
bounded by the linear response value 1/2. For strong driving, it can even
approach the thermodynamic limit 1. Quite generally, such machines fall in
three different classes characterized, respectively, as "strong and efficient",
"strong and inefficient", and "balanced". For weakly coupled multicyclic
machines, efficiency at maximum power has lost any universality even in the
linear response regime
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Can the Tajmar effect be explained using a modification of inertia?
The Tajmar effect is an unexplained acceleration observed by accelerometers
and laser gyroscopes close to rotating supercooled rings. The observed ratio
between the gyroscope and ring accelerations was 3+/-1.2x10^-8. Here, a new
model for inertia which has been tested quite successfully on the Pioneer and
flyby anomalies is applied to this problem. The model assumes that the inertia
of the gyroscope is caused by Unruh radiation that appears as the ring and the
fixed stars accelerate relative to it, and that this radiation is subject to a
Hubble-scale Casimir effect. The model predicts that the sudden acceleration of
the nearby ring causes a slight increase in the inertial mass of the gyroscope,
and, to conserve momentum in the reference frame of the spinning Earth, the
gyroscope rotates clockwise with an acceleration ratio of 1.8+/-0.25x10^-8 in
agreement with the observed ratio. However, this model does not explain the
parity violation seen in some of the gyroscope data. To test these ideas the
Tajmar experiment (setup B) could be exactly reproduced in the southern
hemisphere, since the model predicts that the anomalous acceleration should
then be anticlockwise.Comment: 9 pages, 1 figure. Accepted by EPL on the 4th December, 200
Metabolic reprogramming of murine cardiomyocytes during autophagy requires the extracellular nutrient sensor decorin.
The extracellular matrix is a master regulator of tissue homeostasis in health and disease. Here we examined how the small, leucine-rich, extracellular matrix proteoglycan decorin regulates cardiomyocyte metabolism during fasting in vivo. First, we validated in Dcn-/- mice that decorin plays an essential role in autophagy induced by fasting. High-Throughput metabolomics analyses of cardiac tissue in Dcn-/- mice subjected to fasting revealed striking differences in the hexosamine biosynthetic pathway resulting in aberrant cardiac O-β-N-Acetylglycosylation as compared with WT mice. Functionally, Dcn-/- mice maintained cardiac function at a level comparable with nonfasted animals whereas fasted WT mice showed reduced ejection fraction. Collectively, our results suggest that reduced sensing of nutrient deprivation in the absence of decorin preempts functional adjustments of cardiac output associated with metabolic reprogramming. © 2018 Gubbiotti et al
- …
