54 research outputs found

    Association between the timing of childhood adversity and epigenetic patterns across childhood and adolescence:findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort

    Get PDF
    BACKGROUND: Childhood adversity is a potent determinant of health across development and is associated with altered DNA methylation signatures, which might be more common in children exposed during sensitive periods in development. However, it remains unclear whether adversity has persistent epigenetic associations across childhood and adolescence. We aimed to examine the relationship between time-varying adversity (defined through sensitive period, accumulation of risk, and recency life course hypotheses) and genome-wide DNA methylation, measured three times from birth to adolescence, using data from a prospective, longitudinal cohort study.METHODS: We first investigated the relationship between the timing of exposure to childhood adversity between birth and 11 years and blood DNA methylation at age 15 years in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort study. Our analytic sample included ALSPAC participants with DNA methylation data and complete childhood adversity data between birth and 11 years. We analysed seven types of adversity (caregiver physical or emotional abuse, sexual or physical abuse [by anyone], maternal psychopathology, one-adult households, family instability, financial hardship, and neighbourhood disadvantage) reported by mothers five to eight times between birth and 11 years. We used the structured life course modelling approach (SLCMA) to identify time-varying associations between childhood adversity and adolescent DNA methylation. Top loci were identified using an R 2 threshold of 0·035 (ie, ≥3·5% of DNA methylation variance explained by adversity). We attempted to replicate these associations using data from the Raine Study and Future of Families and Child Wellbeing Study (FFCWS). We also assessed the persistence of adversity-DNA methylation associations we previously identified from age 7 blood DNA methylation into adolescence and the influence of adversity on DNA methylation trajectories from ages 0-15 years. FINDINGS: Of 13 988 children in the ALSPAC cohort, 609-665 children (311-337 [50-51%] boys and 298-332 [49-50%] girls) had complete data available for at least one of the seven childhood adversities and DNA methylation at 15 years. Exposure to adversity was associated with differences in DNA methylation at 15 years for 41 loci (R 2 ≥0·035). Sensitive periods were the most often selected life course hypothesis by the SLCMA. 20 (49%) of 41 loci were associated with adversities occurring between age 3 and 5 years. Exposure to one-adult households was associated with differences in DNA methylation at 20 [49%] of 41 loci, exposure to financial hardship was associated with changes at nine (22%) loci, and physical or sexual abuse was associated with changes at four (10%) loci. We replicated the direction of associations for 18 (90%) of 20 loci associated with exposure to one-adult household using adolescent blood DNA methylation from the Raine Study and 18 (64%) of 28 loci using saliva DNA methylation from the FFCWS. The directions of effects for 11 one-adult household loci were replicated in both cohorts. Differences in DNA methylation at 15 years were not present at 7 years and differences identified at 7 years were no longer apparent by 15 years. We also identified six distinct DNA methylation trajectories from these patterns of stability and persistence. INTERPRETATION: These findings highlight the time-varying effect of childhood adversity on DNA methylation profiles across development, which might link exposure to adversity to potential adverse health outcomes in children and adolescents. If replicated, these epigenetic signatures could ultimately serve as biological indicators or early warning signs of initiated disease processes, helping identify people at greater risk for the adverse health consequences of childhood adversity.FUNDING: Canadian Institutes of Health Research, Cohort and Longitudinal Studies Enhancement Resources, EU's Horizon 2020, US National Institute of Mental Health.</p

    Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components

    Get PDF
    Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory) to specific (e.g. phosphorylation or transcriptional regulation). We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/

    The OSU1/QUA2/TSD2-Encoded Putative Methyltransferase Is a Critical Modulator of Carbon and Nitrogen Nutrient Balance Response in Arabidopsis

    Get PDF
    The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants

    A managerial revolution in reverse: finance market control of the corporation and the triumph of the agency theory model

    No full text
    Corporate governance denotes different practices and procedures in economic sociology and in the economic theory literature; while economic sociologists are concerned about understanding the institutional features of corporate law and other corporate governance vehicles, economists are primarily interested in theorizing how capital owners can reduce agency costs. In pursuing the latter objective, agency theory has been remarkably successful in advancing shareholder value creation as the only legitimate objective of firms. This accomplishment is deeply entangled with a series of political, macroeconomic and institutional changes in (primarily) the US economy and political life, including the financialization of the world economy. The article examines these changes and stresses the capital funding of free-market advocates in academic communities as a decisive factor that contributes to the popularity of shareholder value creation. The study thus calls for a broader institutional view of the political economy of corporate governance and in the study of the ‘managerial revolution in reverse’ taking place as managerial capitalism is displaced by investor capitalism. \ua9 2015, Taylor & Francis

    Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    No full text
    Virulent factors produced by pathogens play an important role in the infectious process, which is regulated by a cell-to-cell communication mechanism called quorum sensing (QS). Pseudomonas aeruginosa is an important opportunistic human pathogen, which causes infections in patients with compromised immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed the animals with P. aeruginosa pneumonia to effectively clear the bacterial infection. We postulated that the ability to impact the outcome of infections is partly due to ginseng having direct effect on the production of P. aeruginosa virulence factors. The study explores the effect of ginseng on alginate, protease and AHL production. The effect of ginseng extracts on growth and expression of quorum-sensing (QS)-controlled virulence factors on the prototypic P. aeruginosa PAO1 and its isogenic mucoid variant (PAOmucA22 or PDO300) was determined. Ginseng did not inhibit the growth of the bacteria, enhanced the extracellular protein production and stimulated the production of alginate. However, ginseng suppressed the production of LasA and LasB and down-regulated the synthesis of the AHL molecules. Ginseng has a negative effect on the QS system of P. aeruginosa, which might be part of the mechanisms that ginseng helped the bacterial clearance from the animal lungs in vivo in our previous animal study. It is possible that enhancing and repressing activities of ginseng are mutually exclusive as it is a complex mixture, as shown with the HPLC anaylsis of the hot water extract of ginseng that was performed in this study. Though ginseng is a promising natural synergetic remedy, it is important to isolate and evaluate the ginseng compounds associated with the anti-QS activity

    A Metagenomic Approach to the Airways Microbiome of Chronic Obstructive Pulmonary Disease (COPD)

    No full text
    Current research has shown that different sites of the human body house different bacterial communities. There is a strong correlation between an individual's microbial community profile at a given site and the onset of disease. Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease resulting in narrowing of the airways and restricted airflow. Despite being the third leading cause of death in the United States, little is known about the differences in the lung microbial community profiles of healthy individuals vs. COPD patients. Metagenomics is the culture-independent study of genetic material obtained directly from samples. A metagenomic analysis of 56 individuals was conducted. Bronchoalveolar lavage (BAL) samples were collected from COPD patients, active or ex-smokers, and never smokers. 454 pyrosequencing of 16S rRNA was performed and analyzed using a newly designed, modular bioinformatic workflow. Substantial colonization of the lungs was found in all subjects and differentially abundant genera in each group were identified (including Tropheryma in COPD and Sneathia in smokers). These discoveries are promising and may further our understanding of how the structure of the lung microbiome is modified as COPD progresses. It is also anticipated that the results will eventually lead to improved treatments for COPD
    • …
    corecore