108 research outputs found

    Self-Renormalization of the Classical Quasilocal Energy

    Get PDF
    Pointlike objects cause many of the divergences that afflict physical theories. For instance, the gravitational binding energy of a point particle in Newtonian mechanics is infinite. In general relativity, the analog of a point particle is a black hole and the notion of binding energy must be replaced by quasilocal energy. The quasilocal energy (QLE) derived by York, and elaborated by Brown and York, is finite outside the horizon but it was not considered how to evaluate it inside the horizon. We present a prescription for finding the QLE inside a horizon, and show that it is finite at the singularity for a variety of types of black hole. The energy is typically concentrated just inside the horizon, not at the central singularity.Comment: 7 pages, 4 figure

    Brown-York Energy and Radial Geodesics

    Full text link
    We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal energies for round spheres in spherically symmetric space-times from the point of view of radial geodesics. In particular, we show that the relation between the BY and MS energies is precisely analogous to that between the (relativistic) energy E of a geodesic and the effective (Newtonian) energy E_{eff} appearing in the geodesic equation, thus shedding some light on the relation between the two. Moreover, for Schwarzschild-like metrics we establish a general relationship between the BY energy and the geodesic effective potential which explains and generalises the recently observed connection between negative BY energy and the repulsive behaviour of geodesics in the Reissner-Nordstrom metric. We also comment on the extension of this connection between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ

    Bunching instability of rotating relativistic electron layers and coherent synchrotron radiation

    Full text link
    We study the stability of a collisionless, relativistic, finite-strength, cylindrical layer of charged particles in free space by solving the linearized Vlasov-Maxwell equations and compute the power of the emitted electromagnetic waves. The layer is rotating in an external magnetic field parallel to the layer. This system is of interest to understanding the high brightness temperature of pulsars which cannot be explained by an incoherent radiation mechanism. Coherent synchrotron radiation has also been observed recently in bunch compressors used in particle accelerators. We consider equilibrium layers with a `thermal' energy spread and therefore a non-zero radial thickness. The particles interact with their retarded electromagnetic self-fields. The effect of the betatron oscillations is retained. A short azimuthal wavelength instability is found which causes a modulation of the charge and current densities. The growth rate is found to be an increasing function of the azimuthal wavenumber, a decreasing function of the Lorentz factor, and proportional to the square root of the total number of electrons. We argue that the growth of the unstable perturbation saturates when the trapping frequency of electrons in the wave becomes comparable to the growth rate. Owing to this saturation we can predict the radiation spectrum for a given set of parameters. Our predicted brightness temperatures are proportional to the square of the number of particles and scale by the inverse five-third power of the azimuthal wavenumber which is in rough accord with the observed spectra of radio pulsars.Comment: 15 pages, 9 figures, LaTeX; presented at the April Meeting in Denver, Colorado 2004; numerous typos corrected, one approximation removed, one new proof added, accepted for publication in Phys. Rev.

    A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility

    Get PDF
    The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes

    corona Is Required for Higher-Order Assembly of Transverse Filaments into Full-Length Synaptonemal Complex in Drosophila Oocytes

    Get PDF
    The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable ‘zippering’ of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells

    SYNOPSIS OF THE GENUS PISEINOTECUS WITH DESCRIPTION OF PISEINOTECUS-EVELINAE SPEC-NOV

    No full text
    Volume: 23Start Page: 21End Page: 2

    Die embryonale Erythropoiese der Charadriiformes

    No full text
    Volume: 70Start Page: 677End Page: 68
    • …
    corecore