6,173 research outputs found

    Extended interface states enhance valley splitting in Si/SiO2

    Full text link
    Interface disorder and its effect on the valley degeneracy of the conduction band edge remains among the greatest theoretical challenges for understanding the operation of spin qubits in silicon. Here, we investigate a counterintuitive effect occurring at Si/SiO2 interfaces. By applying tight binding methods, we show that intrinsic interface states can hybridize with conventional valley states, leading to a large ground state energy gap. The effects of hybridization have not previously been explored in details for valley splitting. We find that valley splitting is enhanced in the presence of disordered chemical bonds, in agreement with recent experiments.Comment: 4 pages, 4 figure

    Extended interface states enhance valley splitting in Si/SiO2

    Full text link
    Interface disorder and its effect on the valley degeneracy of the conduction band edge remains among the greatest theoretical challenges for understanding the operation of spin qubits in silicon. Here, we investigate a counterintuitive effect occurring at Si/SiO2 interfaces. By applying tight binding methods, we show that intrinsic interface states can hybridize with conventional valley states, leading to a large ground state energy gap. The effects of hybridization have not previously been explored in details for valley splitting. We find that valley splitting is enhanced in the presence of disordered chemical bonds, in agreement with recent experiments.Comment: 4 pages, 4 figure

    Donors in Ge as Qubits: Establishing Physical Attributes

    Full text link
    Quantum electronic devices at the single impurity level demand an understanding of the physical attributes of dopants at an unprecedented accuracy. Germanium-based technologies have been developed recently, creating a necessity to adapt the latest theoretical tools to the unique electronic structure of this material. We investigate basic properties of donors in Ge which are not known experimentally, but are indispensable for qubit implementations. Our approach provides a description of the wavefunction at multiscale, associating microscopic information from Density Functional Theory and envelope functions from state of the art multivalley effective mass calculations, including a central cell correction designed to reproduce the energetics of all group V donor species (P, As, Sb and Bi). With this formalism, we predict the binding energies of negatively ionized donors (D- state). Furthermore, we investigate the signatures of buried donors to be expected from Scanning Tunneling Microscopy (STM). The naive assumption that attributes of donor electrons in other semiconductors may be extrapolated to Ge is shown to fail, similar to earlier attempts to recreate in Si qubits designed for GaAs. Our results suggest that the mature techniques available for qubit realizations may be adapted to germanium to some extent, but the peculiarities of the Ge band structure will demand new ideas for fabrication and control

    Theory of one and two donors in Silicon

    Full text link
    We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discussed. The most accurate instances -- for which we provide quantitative results -- are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations -- in particular, for a donor pair, we discuss the single orbital LCAO method, the Huckel approximation and the Hubbard model. Finally we discuss the connection between these results and recent experiments on few dopant devices.Comment: 13 pages, 6 figure

    Aggregated functional data model for Near-Infrared Spectroscopy calibration and prediction

    Full text link
    Calibration and prediction for NIR spectroscopy data are performed based on a functional interpretation of the Beer-Lambert formula. Considering that, for each chemical sample, the resulting spectrum is a continuous curve obtained as the summation of overlapped absorption spectra from each analyte plus a Gaussian error, we assume that each individual spectrum can be expanded as a linear combination of B-splines basis. Calibration is then performed using two procedures for estimating the individual analytes curves: basis smoothing and smoothing splines. Prediction is done by minimizing the square error of prediction. To assess the variance of the predicted values, we use a leave-one-out jackknife technique. Departures from the standard error models are discussed through a simulation study, in particular, how correlated errors impact on the calibration step and consequently on the analytes' concentration prediction. Finally, the performance of our methodology is demonstrated through the analysis of two publicly available datasets.Comment: 27 pages, 7 figures, 7 table

    Watermelon stomach seen by wireless‐capsule endoscopy

    Get PDF
    Endoscopy. 2003 Jan;35(1):100. Watermelon stomach seen by wireless-capsule endoscopy. Mascarenhas-Saraiva M, Lopes L, Mascarenhas-Saraiva A. SourceDigestive Endoscopy and Motility Unit, Trindade Hospital, Rua Trinidade 115, 4000-541 Porto, Portugal. [email protected] PMID:12510242[PubMed - indexed for MEDLINE

    Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO_2 interface

    Full text link
    We analyze the valley composition of one electron bound to a shallow donor close to a Si/barrier interface as a function of an applied electric field. A full six-valley effective mass model Hamiltonian is adopted. For low fields, the electron ground state is essentially confined at the donor. At high fields the ground state is such that the electron is drawn to the interface, leaving the donor practically ionized. Valley splitting at the interface occurs due to the valley-orbit coupling, V_vo^I = |V_vo^I| e^{i theta}. At intermediate electric fields, close to a characteristic shuttling field, the electron states may constitute hybridized states with valley compositions different from the donor and the interface ground states. The full spectrum of energy levels shows crossings and anti-crossings as the field varies. The degree of level repulsion, thus the width of the anti-crossing gap, depends on the relative valley compositions, which vary with |V_vo^I|, theta and the interface-donor distance. We focus on the valley configurations of the states involved in the donor-interface tunneling process, given by the anti-crossing of the three lowest eigenstates. A sequence of two anti-crossings takes place and the complex phase theta affects the symmetries of the eigenstates and level anti-crossing gaps. We discuss the implications of our results on the practical manipulation of donor electrons in Si nanostructures.Comment: 8 pages, including 5 figures. v2: Minor clarifying changes in the text and figures. Change of title. As published in PR

    Proposal for a single-molecule field-effect transistor for phonons

    Full text link
    We propose a practical realization of a field-effect transistor for phonons. Our device is based on a single ionic polymeric molecule and it gives modulations as large as -25% in the thermal conductance for feasible temperatures and electric field magnitudes. Such effect can be achieved by reversibly switching the acoustic torsion mode into an optical mode through the coupling of an applied electric field to the dipole moments of the monomers. This device can pave the way to the future development of phononics at the nanoscale or molecular scale

    Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis

    Get PDF
    Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-fold compared with matched controls and correlated positively with extent of lung infiltration on chest radiographs (r = 0.483; p < 0.05). M. tuberculosis infection of primary human monocytes increased MT1-MMP surface expression 31.7-fold and gene expression 24.5-fold. M. tuberculosis-infected monocytes degraded collagen matrix in an MT1-MMP-dependent manner, and MT1-MMP neutralization decreased collagen degradation by 73%. In human TB granulomas, MT1-MMP immunoreactivity was observed in macrophages throughout the granuloma. Monocyte-monocyte networks caused a 17.5-fold increase in MT1-MMP surface expression dependent on p38 MAPK and G protein-coupled receptor-dependent signaling. Monocytes migrating toward agarose beads impregnated with conditioned media from M. tuberculosis-infected monocytes expressed MT1-MMP. Neutralization of MT1-MMP activity decreased this M. tuberculosis network-dependent monocyte migration by 44%. Taken together, we demonstrate that MT1-MMP is central to two key elements of TB pathogenesis, causing collagen degradation and regulating monocyte migration
    corecore