4,795 research outputs found

    CNO behaviour in planet-harbouring stars. II. Carbon abundances in stars with and without planets using the CH band

    Full text link
    Context. Carbon, oxygen and nitrogen (CNO) are key elements in stellar formation and evolution, and their abundances should also have a significant impact on planetary formation and evolution. Aims. We present a detailed spectroscopic analysis of 1110 solar-type stars, 143 of which are known to have planetary companions. We have determined the carbon abundances of these stars and investigate a possible connection between C and the presence of planetary companions. Methods. We used the HARPS spectrograph to obtain high-resolution optical spectra of our targets. Spectral synthesis of the CH band at 4300\AA was performed with the spectral synthesis codes MOOG and FITTING. Results. We have studied carbon in several reliable spectral windows and have obtained abundances and distributions that show that planet host stars are carbon rich when compared to single stars, a signature caused by the known metal-rich nature of stars with planets. We find no different behaviour when separating the stars by the mass of the planetary companion. Conclusions. We conclude that reliable carbon abundances can be derived for solar-type stars from the CH band at 4300\AA. We confirm two different slope trends for [C/Fe] with [Fe/H] because the behaviour is opposite for stars above and below solar values. We observe a flat distribution of the [C/Fe] ratio for all planetary masses, a finding that apparently excludes any clear connection between the [C/Fe] abundance ratio and planetary mass.Comment: 10 pages, 10 figures. Accepted to A&

    C/O vs Mg/Si ratios in solar type stars: The HARPS sample

    Full text link
    Aims. We present a detailed study of the Mg/Si and C/O ratios and their importance in determining the mineralogy of planetary companions. Methods. Using 499 solar-like stars from the HARPS sample, we determine C/O and Mg/Si elemental abundance ratios to study the nature of the possible planets formed. We separated the planetary population in low-mass planets ( < 30 M\rm M_{\odot}) and high-mass planets ( > 30 M\rm M_{\odot}) to test for possible relation with the mass. Results. We find a diversity of mineralogical ratios that reveal the different kinds of planetary systems that can be formed, most of them dissimilar to our solar system. The different values of the Mg/Si and C/O ratios can determine different composition of planets formed. We found that 100\% of our planetary sample present C/O < 0.8. 86\% of stars with high-mass companions present 0.8 > C/O > 0.4, while 14\% present C/O values lower than 0.4. Regarding Mg/Si, all stars with low-mass planetary companion showed values between 1 and 2, while 85% of the high-mass companion sample does. The other 15\% showed Mg/Si values below 1. No stars with planets were found with Mg/Si > 2. Planet hosts with low-mass companions present C/O and Mg/Si ratios similar to those found in the Sun, whereas stars with high-mass companions have lower C/O.Comment: 9 pages, 12 figues. Accepted in A&

    Tratamiento quirúrgico de los síndromes dolorosos regionales complejos tipo II y utilidad de la monitorización neurofisiológica intraoperatoria

    Get PDF
    ResumenEl propósito de esta revisión era presentar las bases bilógicas y fisiopatológicas de la formación de neuromas como causa de los síndromes dolorosos regional (SDRC) tipo II y el uso de la monitorización neurofisiológica intraoperatoria en el tratamiento de los SDRC tipo II secundarios a neuromas en continuidad y en nervios adheridos en cicatrices tras cirugías previas.AbstractThe purpose of this review article was to present the biological and physiological bases of the Complex Regional Pain Syndrome (CRPS) type II and the use of iIntraoperative neurophysiological monitoring in the treatment of CRPS type II secondary to neuroma-in-continuity and scar-tethered nerves

    Análise fitoquímica do extrato etanólico das folhas de Solanum crinitum LAM.

    Get PDF
    Diante da biodiversidade de plantas medicinais, este trabalho teve como objetivo isolar e caracterizar substâncias presentes nas folhas de S. crinitum, utilizando cromatografia de camada fina

    Quantum Magnetic Deflagration in Mn12 Acetate

    Get PDF
    We report controlled ignition of magnetization reversal avalanches by surface acoustic waves in a single crystal of Mn12 acetate. Our data show that the speed of the avalanche exhibits maxima on the magnetic field at the tunneling resonances of Mn12. Combined with the evidence of magnetic deflagration in Mn12 acetate (Suzuki et al., cond-mat/0506569) this suggests a novel physical phenomenon: deflagration assisted by quantum tunneling.Comment: 4 figure

    Análise fitoquímica do extrato etanólico de folhas de Solanum viarum Dunal.

    Get PDF
    Este trabalho teve como objetivo isolar e caracterizar substâncias presentes nas folhas de S. viarum por cromatografia de camada fina

    Graphene Materials to Remove Organic Pollutants and Heavy Metals from Water: Photocatalysis and Adsorption

    Get PDF
    Since graphene was isolated from graphite, different researches have been developed around it. The versatility of graphene properties and their derivates, such as graphene oxide or doped and functionalized graphene materials have expanded the possible applications of these nanostructures. The areas studied of graphene include the following: nanocomposites, drug delivery, transistors, quantum dots, optoelectronic, storage energy, sensors, catalyst support, supercapacitors, among others. However, other important field of these materials is their applications in environment, mainly in the removal of pollutants in water. In this context, there are two possible alternatives to use graphene materials in water purification: photocatalysis and adsorption. In the first case, the key is related to the bandgap and semiconductors properties of these materials, also the versatility of different graphene structures after the oxidation or functionalization, play an important role to get different arrangements useful in photocatalysis and avoid recombination, one of the problems of typical semiconductors photocatalysts. In the second case, surface area and useful chemical groups in carbon material give different options to produce efficient adsorbents depending on different synthesis conditions. Thus, this book chapter covers a review of the photocatalytic activity of graphene materials with emphasis in the removal of organic pollutants and heavy metals from water, in the next topics: graphene-based semiconductor photocatalyst and graphene oxide as photocatalyst. On the other hand, the chapter also discusses the research related to the removal of organic compounds and heavy metals using graphene materials as adsorbents, the topics in this second part are as follows: graphene and graphene oxide as adsorbent of heavy metals from water, graphene, and graphene oxide as adsorbent of organic pollutants from water, functionalized graphene materials as adsorbent of water pollutants, carbon nanomaterials vs. graphene as adsorbents. Therefore, the book chapter presents a review and the discussion of the keys that play an important role in the advances in the research of graphene materials as photocatalysts. In addition, the isotherms and kinetic that produce these materials as adsorbents are also reviewed and discussed, because adsorption process in these materials is important to remove pollutants from water, but also for adsorption is a first step to achieve photocatalyst. The future of this topic in graphene materials is also analyzed

    Thermal Conduction in Systems out of Hydrostatic Equilibrium

    Get PDF
    We analyse the effects of thermal conduction in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of thermal relaxation time. It is obtained that the resulting evolution will critically depend on a parameter defined in terms of thermodynamic variables, which is constrained by causality requirements.Comment: 16 pages, emTex (LaTex 2.09). To appear in Classical and Quantum Gravit
    corecore