747 research outputs found
On the rate of quantum ergodicity in Euclidean billiards
For a large class of quantized ergodic flows the quantum ergodicity theorem
due to Shnirelman, Zelditch, Colin de Verdi\`ere and others states that almost
all eigenfunctions become equidistributed in the semiclassical limit. In this
work we first give a short introduction to the formulation of the quantum
ergodicity theorem for general observables in terms of pseudodifferential
operators and show that it is equivalent to the semiclassical eigenfunction
hypothesis for the Wigner function in the case of ergodic systems. Of great
importance is the rate by which the quantum mechanical expectation values of an
observable tend to their mean value. This is studied numerically for three
Euclidean billiards (stadium, cosine and cardioid billiard) using up to 6000
eigenfunctions. We find that in configuration space the rate of quantum
ergodicity is strongly influenced by localized eigenfunctions like bouncing
ball modes or scarred eigenfunctions. We give a detailed discussion and
explanation of these effects using a simple but powerful model. For the rate of
quantum ergodicity in momentum space we observe a slower decay. We also study
the suitably normalized fluctuations of the expectation values around their
mean, and find good agreement with a Gaussian distribution.Comment: 40 pages, LaTeX2e. This version does not contain any figures. A
version with all figures can be obtained from
http://www.physik.uni-ulm.de/theo/qc/ (File:
http://www.physik.uni-ulm.de/theo/qc/ulm-tp/tp97-8.ps.gz) In case of any
problems contact Arnd B\"acker (e-mail: [email protected]) or Roman
Schubert (e-mail: [email protected]
From limit cycles to strange attractors
We define a quantitative notion of shear for limit cycles of flows. We prove
that strange attractors and SRB measures emerge when systems exhibiting limit
cycles with sufficient shear are subjected to periodic pulsatile drives. The
strange attractors possess a number of precisely-defined dynamical properties
that together imply chaos that is both sustained in time and physically
observable.Comment: 27 page
Semiclassical measures and the Schroedinger flow on Riemannian manifolds
In this article we study limits of Wigner distributions (the so-called
semiclassical measures) corresponding to sequences of solutions to the
semiclassical Schroedinger equation at times scales tending to
infinity as the semiclassical parameter tends to zero (when this is equivalent to consider solutions to the non-semiclassical
Schreodinger equation). Some general results are presented, among which a weak
version of Egorov's theorem that holds in this setting. A complete
characterization is given for the Euclidean space and Zoll manifolds (that is,
manifolds with periodic geodesic flow) via averaging formulae relating the
semiclassical measures corresponding to the evolution to those of the initial
states. The case of the flat torus is also addressed; it is shown that
non-classical behavior may occur when energy concentrates on resonant
frequencies. Moreover, we present an example showing that the semiclassical
measures associated to a sequence of states no longer determines those of their
evolutions. Finally, some results concerning the equation with a potential are
presented.Comment: 18 pages; Theorems 1,2 extendend to deal with arbitrary time-scales;
references adde
Spectral statistics of random geometric graphs
We use random matrix theory to study the spectrum of random geometric graphs,
a fundamental model of spatial networks. Considering ensembles of random
geometric graphs we look at short range correlations in the level spacings of
the spectrum via the nearest neighbour and next nearest neighbour spacing
distribution and long range correlations via the spectral rigidity Delta_3
statistic. These correlations in the level spacings give information about
localisation of eigenvectors, level of community structure and the level of
randomness within the networks. We find a parameter dependent transition
between Poisson and Gaussian orthogonal ensemble statistics. That is the
spectral statistics of spatial random geometric graphs fits the universality of
random matrix theory found in other models such as Erdos-Renyi, Barabasi-Albert
and Watts-Strogatz random graph.Comment: 19 pages, 6 figures. Substantially updated from previous versio
Transverse instability for non-normal parameters
We consider the behaviour of attractors near invariant subspaces on varying a
parameter that does not preserve the dynamics in the invariant subspace but is
otherwise generic, in a smooth dynamical system. We refer to such a parameter
as ``non-normal''. If there is chaos in the invariant subspace that is not
structurally stable, this has the effect of ``blurring out'' blowout
bifurcations over a range of parameter values that we show can have positive
measure in parameter space.
Associated with such blowout bifurcations are bifurcations to attractors
displaying a new type of intermittency that is phenomenologically similar to
on-off intermittency, but where the intersection of the attractor by the
invariant subspace is larger than a minimal attractor. The presence of distinct
repelling and attracting invariant sets leads us to refer to this as ``in-out''
intermittency. Such behaviour cannot appear in systems where the transverse
dynamics is a skew product over the system on the invariant subspace.
We characterise in-out intermittency in terms of its structure in phase space
and in terms of invariants of the dynamics obtained from a Markov model of the
attractor. This model predicts a scaling of the length of laminar phases that
is similar to that for on-off intermittency but which has some differences.Comment: 15 figures, submitted to Nonlinearity, the full paper available at
http://www.maths.qmw.ac.uk/~eo
Functional Text Dimensions for the annotation of web corpora
This paper presents an approach to classifying large web corpora into genres by means of Functional Text Dimensions (FTDs). This offers a topological approach to text typology in which the texts are described in terms of their similarity to prototype genres. The suggested set of categories is designed to be applicable to any text on the web and to be reliable in annotation practice. Interannotator agreement results show that the suggested categories produce Krippendorff's α at above 0.76. In addition to the functional space of eighteen dimensions, similarity between annotated documents can be described visually within a space of reduced dimensions obtained through t-distributed Statistical Neighbour Embedding. Reliably annotated texts also provide the basis for automatic genre classification, which can be done in each FTD, as well as as within the space of reduced dimensions. An example comparing texts from the Brown Corpus, the BNC and ukWac, a large web corpus, is provided
Classical and quantum ergodicity on orbifolds
We extend to orbifolds classical results on quantum ergodicity due to
Shnirelman, Colin de Verdi\`ere and Zelditch, proving that, for any positive,
first-order self-adjoint elliptic pseudodifferential operator P on a compact
orbifold X with positive principal symbol p, ergodicity of the Hamiltonian flow
of p implies quantum ergodicity for the operator P. We also prove ergodicity of
the geodesic flow on a compact Riemannian orbifold of negative sectional
curvature.Comment: 14 page
Large deviations for non-uniformly expanding maps
We obtain large deviation results for non-uniformly expanding maps with
non-flat singularities or criticalities and for partially hyperbolic
non-uniformly expanding attracting sets. That is, given a continuous function
we consider its space average with respect to a physical measure and compare
this with the time averages along orbits of the map, showing that the Lebesgue
measure of the set of points whose time averages stay away from the space
average decays to zero exponentially fast with the number of iterates involved.
As easy by-products we deduce escape rates from subsets of the basins of
physical measures for these types of maps. The rates of decay are naturally
related to the metric entropy and pressure function of the system with respect
to a family of equilibrium states. The corrections added to the published
version of this text appear in bold; see last section for a list of changesComment: 36 pages, 1 figure. After many PhD students and colleagues having
pointed several errors in the statements and proofs, this is a correction to
published article answering those comments. List of main changes in a new
last sectio
On the Lebesgue measure of Li-Yorke pairs for interval maps
We investigate the prevalence of Li-Yorke pairs for and
multimodal maps with non-flat critical points. We show that every
measurable scrambled set has zero Lebesgue measure and that all strongly
wandering sets have zero Lebesgue measure, as does the set of pairs of
asymptotic (but not asymptotically periodic) points.
If is topologically mixing and has no Cantor attractor, then typical
(w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally
admits an absolutely continuous invariant probability measure (acip), then
typical pairs have a dense orbit for . These results make use of
so-called nice neighborhoods of the critical set of general multimodal maps,
and hence uniformly expanding Markov induced maps, the existence of either is
proved in this paper as well.
For the setting where has a Cantor attractor, we present a trichotomy
explaining when the set of Li-Yorke pairs and distal pairs have positive
two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure
The hybrid spectral problem and Robin boundary conditions
The hybrid spectral problem where the field satisfies Dirichlet conditions
(D) on part of the boundary of the relevant domain and Neumann (N) on the
remainder is discussed in simple terms. A conjecture for the C_1 coefficient is
presented and the conformal determinant on a 2-disc, where the D and N regions
are semi-circles, is derived. Comments on higher coefficients are made.
A hemisphere hybrid problem is introduced that involves Robin boundary
conditions and leads to logarithmic terms in the heat--kernel expansion which
are evaluated explicitly.Comment: 24 pages. Typos and a few factors corrected. Minor comments added.
Substantial Robin additions. Substantial revisio
- …