869 research outputs found

    Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    Get PDF
    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions

    Studies of noise transmission in advanced composite material structures

    Get PDF
    Noise characteristics of advanced composite material fuselages were discussed from the standpoints of applicable research programs and noise transmission theory. Experimental verification of the theory was also included

    A variational approach to video registration with subspace constraints

    Get PDF
    This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.Ravi Garg, Anastasios Roussos, Lourdes Agapit

    Reducing STEM gender bias with VIDS (video interventions for diversity in STEM)

    Get PDF
    Gender biases contribute to the underrepresentation of women in STEM. In response, the scientific community has called for methods to reduce bias, but few validated interventions exist. Thus, an interdisciplinary group of researchers and filmmakers partnered to create VIDS (Video Interventions for Diversity in STEM), which are short videos that expose participants to empirical findings from published gender bias research in 1 of 3 conditions. One condition illustrated findings using narratives (compelling stories), and the second condition presented the same results using expert interviews (straightforward facts). A hybrid condition included both narrative and expert interview videos. Results of two experiments revealed that relative to controls, VIDS successfully reduced gender bias and increased awareness of gender bias, positive attitudes toward women in STEM, anger, empathy, and intentions to engage in behaviors that promote gender parity in STEM. The narratives were particularly impactful for emotions, while the expert interviews most strongly impacted awareness and attitudes. The hybrid condition reflected the strengths of both the narratives and expert interviews (though effects were sometimes slightly weaker than the other conditions). VIDS produced substantial immediate effects among both men and women in the general population and STEM faculty, and effects largely persisted at follow-up. (PsycINFO Database Record (c) 2018 APA, all rights reserved

    Weaning from Mechanical Ventilation

    Full text link
    For most patients who require mechanical ventilation weaning and extubation is simple. In these patients a variety of strategies can be successful. In addition, sim ple criteria may predict when the patient is ready for extubation. For the small group of patients who require prolonged mechanical ventilation, however, contro versy exists about how best to remove ventilator sup port by weaning, and available data are sparse. Much of the controversy has centered on T-piece weaning ver sus intermittent mandatory ventilation. To date no con trolled study has demonstrated the superiority of either intermittent mandatory ventilation or T-piece weaning in difficult-to-wean patients. In the evolution of this con troversy, concern has developed over the potential for increased inspiratory work and expiratory resistance that may be associated with certain intermittent manda tory ventilation systems. The possibility that significant inspiratory work may occur during assist-control venti lation has also been demonstrated. Respiratory muscle weakness and fatigue is likely important in failure to wean. Other possible causes are failure of the cardiovas cular system and impaired ability of the lung to carry out gas exchange. In this article we first examine criteria and techniques for weaning short-term ventilator pa tients. We then examine criteria to begin the weaning process in prolonged ventilation patients, potential causes of failure to wean, and techniques that can be used to remove ventilator support from patients who are difficult to wean. Much literature has been devoted to techniques and criteria for weaning and extubation of patients from mechanical ventilation. For most patients who require ventilatory support, weaning and extuba tion can be easily accomplished by a variety of tech niques [1-4]. At one referral center 77.2% of all surviving patients were weaned from the ventilator within 72 hours of the onset of mechanical ventila tion, and 91% were weaned within 7 days [1]. Less than 10% of ventilated patients potentially posed problems in weaning from mechanical ventilation. Similarly, at a community hospital, few surviving patients required prolonged ventilatory support [2]. In easy-to-wean patients, Sahn and Lakshminarayan [5] described simple criteria that are predictive of successful discontinuation of ventilator support. For the small group of patients who require pro longed mechanical ventilation, however, minimal data are available. In these patients criteria to deter mine weaning ability or which measurements to follow are not clearly defined. Furthermore, no controlled trials are available to compare the differ ent weaning techniques proposed. In this article we first address routine weaning of the patient who has not required prolonged ventilator support. We then examine the difficult-to-wean patient and dis cuss criteria to begin the weaning process, poten tial causes of failure to wean, and available weaning techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68923/2/10.1177_088506668800300207.pd
    • …
    corecore