419 research outputs found
Money and uncertainty in the Philippines: A Friedmanite Perspective
This paper aims to provide a unified theoretical framework of the two hypotheses proposed by Friedman: (i). increased variability of money supply results in the decline of income velocity of money and (ii) high inflation leads high variability of inflation which reduces potential output growth. This paper also provides empirical investigation to validate Friedman's hypotheses using Philippine data. The Philippine economy experienced persistently higher and more variable inflation rate and weaker macroeconomic performance relative to other Asian countries, and these characteristics provide ample opportunity to evaluate Friedman's proposals at work. Utilizing original methodologies (e.g. band‐pass filter), our findings validate both proposals.Friedman, GARCH, T‐GARCH, Bai‐and‐Perron technique, band pass filter
Tube choledochoureterostomy: A simple method for bile diversion
A technique of bile diversion by tube choledochoureterostomy has been devised for the purpose of studying the role of bile in the intestinal absorption of drugs. This method was used in six dogs. No technical difficulties or major complications developed, as are inevitable with alternative methods, including external fistula. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Optimization methods and their use in low-energy electron-diffraction calculations
The speed of automatic optimization procedures used in surface structure determination by low-energy electron diffraction can be greatly enhanced by the use of linear approximations in the calculation of scattering amplitudes. It is shown how linear approximations can be used in the calculation of derivatives of intensities which are required in the least-squares optimization method. The derivatives with respect to structural and nonstructural parameters are calculated applying a combination of analytic and numerical methods in connection with approximations of the sum over lattice points in the angular momentum representation. Special cases for different structural and nonstructural parameters and simplifications for special geometries are discussed. The computational effort becomes nearly independent of the number of free parameters and enables the analysis of complex surface structures
Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface
Electromigration-induced flow of islands and voids on the Cu(001) surface is
studied at the atomic scale. The basic drift mechanisms are identified using a
complete set of energy barriers for adatom hopping on the Cu(001) surface,
combined with kinetic Monte Carlo simulations. The energy barriers are
calculated by the embedded atom method, and parameterized using a simple model.
The dependence of the flow on the temperature, the size of the clusters, and
the strength of the applied field is obtained. For both islands and voids it is
found that edge diffusion is the dominant mass-transport mechanism. The rate
limiting steps are identified. For both islands and voids they involve
detachment of atoms from corners into the adjacent edge. The energy barriers
for these moves are found to be in good agreement with the activation energy
for island/void drift obtained from Arrhenius analysis of the simulation
results. The relevance of the results to other FCC(001) metal surfaces and
their experimental implications are discussed.Comment: 9 pages, 13 ps figure
Electromigration of Single-Layer Clusters
Single-layer atom or vacancy clusters in the presence of electromigration are
studied theoretically assuming an isotropic medium. A variety of distinctive
behaviors distinguish the response in the three standard limiting cases of
periphery diffusion (PD), terrace diffusion (TD), and evaporation-condensation
(EC). A general model provides power laws describing the size dependence of the
drift velocity in these limits, consistent with established results in the case
of PD. The validity of the widely used quasistatic limit is calculated. Atom
and vacancy clusters drift in opposite directions in the PD limit but in the
same direction otherwise. In absence of PD, linear stability analysis reveals a
new type of morphological instability, not leading to island break-down. For
strong electromigration, Monte Carlo simulations show that clusters then
destabilize into slits, in contrast to splitting in the PD limit.
Electromigration affects the diffusion coefficient of the cluster and
morphological fluctuations, the latter diverging at the instability threshold.
An instrinsic attachment-detachment bias displays the same scaling signature as
PD in the drift velocity.Comment: 11 pages, 4 figure
Ratchet Effect in Surface Electromigration: Smoothing Surfaces by an ac Field
We demonstrate that for surfaces that have a nonzero Schwoebel barrier the
application of an ac field parallel to the surface induces a net electro-
migration current that points in the descending step direction. The magnitude
of the current is calculated analytically and compared with Monte Carlo
simulations. Since a downhill current smoothes the surface, our results imply
that the application of ac fields can aid the smoothing process during
annealing and can slow or eliminate the Schwoebel-barrier-induced mound
formation during growth.Comment: 4 pages, LaTeX, 4 ps figure
Manifestation of quantum chaos on scattering techniques: application to low-energy and photo-electron diffraction intensities
Intensities of LEED and PED are analyzed from a statistical point of view.
The probability distribution is compared with a Porter-Thomas law,
characteristic of a chaotic quantum system. The agreement obtained is
understood in terms of analogies between simple models and Berry's conjecture
for a typical wavefunction of a chaotic system. The consequences of this
behaviour on surface structural analysis are qualitatively discussed by looking
at the behaviour of standard correlation factors.Comment: 5 pages, 4 postscript figures, Latex, APS,
http://www.icmm.csic.es/Pandres/pedro.ht
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
LEED Holography applied to a complex superstructure: a direct view of the adatom cluster on SiC(111)-(3x3)
For the example of the SiC(111)-(3x3) reconstruction we show that a
holographic interpretation of discrete Low Energy Electron Diffraction (LEED)
spot intensities arising from ordered, large unit cell superstructures can give
direct access to the local geometry of a cluster around an elevated atom,
provided there is only one such prominent atom per surface unit cell. By
comparing the holographic images obtained from experimental and calculated data
we illuminate validity, current limits and possible shortcomings of the method.
In particular, we show that periodic vacancies such as cornerholes may inhibit
the correct detection of the atomic positions. By contrast, the extra
diffraction intensity due to slight substrate reconstructions, as for example
buckling, seems to have negligible influence on the images. Due to the spatial
information depth of the method the stacking of the cluster can be imaged down
to the fourth layer. Finally, it is demonstrated how this structural knowledge
of the adcluster geometry can be used to guide the dynamical intensity analysis
subsequent to the holographic reconstruction and necessary to retrieve the full
unit cell structure.Comment: 11 pages RevTex, 6 figures, Phys. Rev. B in pres
A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal
The classification of neuroendocrine neoplasms (NENs) differs between organ systems and currently causes considerable confusion. A uniform classification framework for NENs at any anatomical location may reduce inconsistencies and contradictions among the various systems currently in use. The classification suggested here is intended to allow pathologists and clinicians to manage their patients with NENs consistently, while acknowledging organ-specific differences in classification criteria, tumor biology, and prognostic factors. The classification suggested is based on a consensus conference held at the International Agency for Research on Cancer (IARC) in November 2017 and subsequent discussion with additional experts. The key feature of the new classification is a distinction between differentiated neuroendocrine tumors (NETs), also designated carcinoid tumors in some systems, and poorly differentiated NECs, as they both share common expression of neuroendocrine markers. This dichotomous morphological subdivision into NETs and NECs is supported by genetic evidence at specific anatomic sites as well as clinical, epidemiologic, histologic, and prognostic differences. In many organ systems, NETs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, and/or the presence of necrosis; NECs are considered high grade by definition. We believe this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically
- …