13 research outputs found

    The Dose-Dependent Effects of Multifunctional Enkephalin Analogs on the Protein Composition of Rat Spleen Lymphocytes, Cortex, and Hippocampus; Comparison with Changes Induced by Morphine

    No full text
    This work aimed to test the effect of 7-day exposure of rats to multifunctional enkephalin analogs LYS739 and LYS744 at doses of 3 mg/kg and 10 mg/kg on the protein composition of rat spleen lymphocytes, brain cortex, and hippocampus. Alterations of proteome induced by LYS739 and LYS744 were compared with those elicited by morphine. The changes in rat proteome profiles were analyzed by label-free quantification (MaxLFQ). Proteomic analysis indicated that the treatment with 3 mg/kg of LYS744 caused significant alterations in protein expression levels in spleen lymphocytes (45), rat brain cortex (31), and hippocampus (42). The identified proteins were primarily involved in RNA processing and the regulation of cytoskeletal dynamics. In spleen lymphocytes, the administration of the higher 10 mg/kg dose of both enkephalin analogs caused major, extensive modifications in protein expression levels: LYS739 (119) and LYS744 (182). Among these changes, the number of proteins associated with immune responses and apoptotic processes was increased. LYS739 treatment resulted in the highest number of alterations in the rat brain cortex (152) and hippocampus (45). The altered proteins were functionally related to the regulation of transcription and cytoskeletal reorganization, which plays an essential role in neuronal plasticity. Administration with LYS744 did not increase the number of altered proteins in the brain cortex (26) and hippocampus (26). Our findings demonstrate that the effect of Îș-OR full antagonism of LYS744 is opposite in the central nervous system and the peripheral region (spleen lymphocytes). © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Biomarkers in Earthworms

    No full text
    27 pagesSoil-dwelling naturally occurring earthworms (e.g. Lumbricus terrestris) are valuable sentinels in soil pollution monitoring for their ecological role but also because they have shown to be sensitive to environmental contaminants. However, most laboratory studies have adopted epigeic earthworms as models (Eisenia spp.) in acute toxicity testing. In soil chronic toxicity assessment, it is essential to include sublethal responses that can have direct implications on species performance, reproduction and behaviour and thus be of ecological significance. In this sense, some biochemical biomarkers are regarded as early warning signals of further ecological consequences. Amongst those most frequently considered are specific responses to certain chemicals (e.g. metallothionein induction to metal exposure) but also those related to oxidative homeostasis of the organisms because prolonged stress may lead to adverse effects at the individual level (disruption of immune system, altered growth and reproduction). Biomarker measures can be applied in specific tissues, but, for methodological constraints, the consideration of the whole animal simplifies protocols and, once validated, they are informative and integrative. The use of non-destructive tissues (e.g. coelomocytes) that do not require sacrifice, the incorporation of “omic” disciplines and recent technical advances in metabolite identification are all encouraged to be incorporated into toxicity evaluationTo the EU Water JPI-2015 AWARE project (PCIN-2017-067), D. Nos and D. Romano are thanked for their contribution to the projectPeer reviewe

    Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1

    Get PDF
    Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-ÎșB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies

    Differences in the cellular response and signaling pathways between cisplatin and monodentate organometallic Ru(II) antitumor complexes containing a terphenyl ligand

    No full text
    The new monofunctional Ru(II)-arene complex [(η6-arene)Ru(II)(en)Cl]+, where en = 1,2-diaminoethane and the arene is para-terphenyl (complex 1) exhibits promising cytotoxic effects in human tumor cells including those resistant to conventional cisplatin (J. Med. Chem.2008, 51, 5310). The present study is focused on the cellular pharmacology of 1 to elucidate more deeply the mechanisms underlying its antitumor effects. We have identified several cellular mechanisms induced by 1 in human ovarian carcinoma cells, including inhibition of DNA synthesis, overexpression and activation of p53, expression of proapoptotic proteins p21WAF1 and Bax, G0/G1 arrest, and nuclear fragmentation as a result of apoptotic, and, to a much lower extent, also necrotic processes. Thus, 1 inhibits growth of the cancer cells through induction of apoptotic cell death and G0/G1 cell cycle arrest. Further investigations have shown that 1 induces apoptosis by regulating the expression of Bcl-2 family proteins. There were significant differences in cellular responses to the treatment with 1 and with conventional cisplatin, particularly in the kinetics and the extent of these responses. In addition, the distinct p53 activation profile of 1 compared with cisplatin provides an explanation for the activity of this ruthenium drug against cisplatin-resistant cells. Hence complex 1 may provide an alternative therapy in patients with acquired cisplatin resistance, particularly with respect to its very low mutagenicity and different mode of action compared to platinum antitumor drugs in clinical use
    corecore