580 research outputs found

    Darboux class of cosmological fluids with time-dependent adiabatic indices

    Full text link
    A one-parameter family of time dependent adiabatic indices is introduced for any given type of cosmological fluid of constant adiabatic index by a mathematical method belonging to the class of Darboux transformations. The procedure works for zero cosmological constant at the price of introducing a new constant parameter related to the time dependence of the adiabatic index. These fluids can be the real cosmological fluids that are encountered at cosmological scales and they could be used as a simple and efficient explanation for the recent experimental findings regarding the present day accelerating universe. In addition, new types of cosmological scale factors, corresponding to these fluids, are presentedComment: document with the following three latex files: 1) quhm.tex: 17 pages, 10 figs, 16 numbered refs, Honorable Mention GRF 2000, 2) errad.tex: Errata and Addenda (EaA) of 5 pages with 2 figs enclosed, 3) analogy.tex: Negative friction of Darboux cosmological fluids of 4 page

    Ermakov approach for the one-dimensional Helmholtz Hamiltonian

    Full text link
    For the one-dimensional Helmholtz equation we write the corresponding time-dependent Helmholtz Hamiltonian in order to study it as an Ermakov problem and derive geometrical angles and phases in this contextComment: 6 pages, LaTe

    One-parameter Darboux-transformed quantum actions in Thermodynamics

    Get PDF
    We use nonrelativistic supersymmetry, mainly Darboux transformations of the general (one-parameter) type, for the quantum oscillator thermodynamic actions. Interesting Darboux generalizations of the fundamental Planck and pure vacuum cases are discussed in some detail with relevant plots. It is shown that the one-parameter Darboux-transformed Thermodynamics refers to superpositions of boson and fermion excitations of positive and negative absolute temperature, respectively. Recent results of Arnaud, Chusseau, and Philippe physics/0105048 regarding a single mode oscillator Carnot cycle are extended in the same Darboux perspective. We also conjecture a Darboux generalization of the fluctuation-dissipation theoremComment: 14 pages, 13 figures, correction of the formula in the text after Eq. 7, accepted at Physica Script

    Supersymmetric Fokker-Planck strict isospectrality

    Full text link
    I report a study of the nonstationary one-dimensional Fokker-Planck solutions by means of the strictly isospectral method of supesymmetric quantum mechanics. The main conclusion is that this technique can lead to a space-dependent (modulational) damping of the spatial part of the nonstationary Fokker-Planck solutions, which I call strictly isospectral damping. At the same time, using an additive decomposition of the nonstationary solutions suggested by the strictly isospectral procedure and by an argument of Englefield [J. Stat. Phys. 52, 369 (1988)], they can be normalized and thus turned into physical solutions, i.e., Fokker-Planck probability densities. There might be applications to many physical processes during their transient periodComment: revised version, scheduled for PRE 56 (1 August 1997) as a B

    Ramanujan sums for signal processing of low frequency noise

    Full text link
    An aperiodic (low frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as M\"obius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low frequency regime. In place we introduce a new signal processing tool based on the Ramanujan sums c_q(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasi-periodic versus the time n of the resonance and aperiodic versus the order q of the resonance. New results arise from the use of this Ramanujan-Fourier transform (RFT) in the context of arithmetical and experimental signalsComment: 11 pages in IOP style, 14 figures, 2 tables, 16 reference

    Gene expression profiling of Mycobacterium avium subsp. paratuberculosis in simulated multi-stress conditions and within THP-1 cells reveals a new kind of interactive intramacrophage behaviour

    Get PDF
    Recent studies have identified in Mycobacterium avium subsp. paratuberculosis (MAP), already known as a pathogen in ruminants, a potential zoonotic agent of some autoimmune diseases in humans. Therefore, considering the possible risk for public health, it is necessary a thorough understanding of MAP's gene expression during infection of human host as well as the identification of its immunogenic and/or virulence factors for the development of appropriate diagnostic and therapeutic tools.In order to characterize MAP's transcriptome during macrophage infection, we analyzed for the first time the whole gene expression of a human derived strain of MAP in simulated intraphagosomal conditions and after intracellular infection of the human macrophage cell line THP-1 by using the DNA-microarray technology. Results showed that MAP shifts its transcriptome to an adaptive metabolism for an anoxic environment and nutrient starvation. It up-regulates several response factors to oxidative stress or intracellular conditions and allows, in terms of transcription, a passive surface peptidoglycan spoliation within the macrophage along with an intensification of the anabolic activity for lipidic membrane structures.These results indicate a possible interactive system between MAP and its host cell based on the internal mimicry unlike other intracellular pathogens, bringing new hypothesis in the virulence and pathogenicity of MAP and its importance in human health
    corecore