9 research outputs found
Ring-Like Distribution of Constitutive Heterochromatin in Bovine Senescent Cells
Background: Cells that reach ‘‘Hayflick limit’ ’ of proliferation, known as senescent cells, possess a particular type of nuclear architecture. Human senescent cells are characterized by the presence of highly condensed senescent associated heterochromatin foci (SAHF) that can be detected both by immunostaining for histone H3 three-methylated at lysine 9 (H3K9me3) and by DAPI counterstaining. Methods: We have studied nuclear architecture in bovine senescent cells using a combination of immunofluorescence and 3D fluorescent in-situ hybridization (FISH). Results: Analysis of heterochromatin distribution in bovine senescent cells using fluorescent in situ hybridization for pericentric chromosomal regions, immunostaining of H3K9me3, centromeric proteins CENP A/B and DNA methylation showed a lower level of heterochromatin condensation as compared to young cells. No SAHF foci were observed. Instead, we observed fibrous ring-like or ribbon-like heterochromatin patterns that were undetectable with DAPI counterstaining. These heterochromatin fibers were associated with nucleoli
Diffuse optical spectroscopic imaging of subcutaneous adipose tissue metabolic changes during weight loss
BACKGROUND: Changes in subcutaneous adipose tissue (AT) structure and metabolism have been shown to correlate with the development of obesity and related metabolic disorders. Measurements of AT physiology could provide new insight into metabolic disease progression and response to therapy. An emerging functional imaging technology, Diffuse Optical Spectroscopic Imaging (DOSI), was used to obtain quantitative measures of near infrared (NIR) AT optical and physiological properties. METHODS: 10 overweight or obese adults were assessed during three-months on calorie-restricted diets. DOSI-derived tissue concentrations of hemoglobin, water, and lipid and the wavelength-dependent scattering amplitude (A) and slope (b) obtained from 30 abdominal locations and three time points (T0, T6, T12) were calculated and analyzed using linear mixed effects models, and were also used to form 3D surface images. RESULTS: Subjects lost a mean of 11.7 ± 3.4% of starting weight, while significant changes in A (+0.23 ± 0.04 mm(−1), adj. p < 0.001), b (−0.17 ± 0.04, adj. p < 0.001), tissue water fraction (+7.2 ± 1.1%, adj. p < 0.001) and deoxyhemoglobin [HbR] (1.1 ± 0.3 µM, adj. p < 0.001) were observed using mixed effect model analysis. DISCUSSION: Optical scattering signals reveal alterations in tissue structure which possibly correlate with reductions in adipose cell volume, while water and hemoglobin dynamics suggest improved AT perfusion and oxygen extraction. These results suggest that DOSI measurements of NIR optical and physiological properties could be used to enhance understanding of the role of AT in metabolic disorders and provide new strategies for diagnostic monitoring of obesity and weight loss
New insights into the robe of PML in tumour suppression
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a sulmuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation