848 research outputs found
Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope.
We demonstrate the capability of a new generation adaptive optics scanning laser ophthalmoscope (AOSLO) to resolve cones and rods in normal subjects, and confirm our findings by comparing cone and rod spacing with published histology measurements. Cone and rod spacing measurements are also performed on AOSLO images from two different diseased eyes, one affected by achromatopsia and the other by acute zonal occult outer retinopathy (AZOOR). The potential of AOSLO technology in the study of these and other retinal diseases is illustrated
Recommended from our members
Relationship Between Foveal Cone Structure and Visual Acuity Measured With Adaptive Optics Scanning Laser Ophthalmoscopy in Retinal Degeneration.
PurposeTo evaluate foveal function in patients with inherited retinal degenerations (IRD) by measuring visual acuity (VA) after correction of higher-order aberrations.MethodsAdaptive optics scanning laser ophthalmoscopy (AOSLO) was used to image cones in 4 healthy subjects and 15 patients with IRD. The 840-nm scanning laser delivered an "E" optotype to measure AOSLO-mediated VA (AOSLO-VA). Cone spacing was measured at the preferred retinal locus by two independent graders and the percentage of cones below the average density of 47 age-similar healthy subjects was computed. Cone spacing was correlated with best-corrected VA measured with the Early Treatment of Diabetic Retinopathy Study protocol (ETDRS-VA), AOSLO-VA, and foveal sensitivity.ResultsETDRS-VA significantly correlated with AOSLO-VA (ρ = 0.79, 95% confidence interval [CI] 0.5-0.9). Cone spacing correlated with AOSLO-VA (ρ = 0.54, 95% CI 0.02-0.7), and negatively correlated with ETDRS letters read (ρ = -0.64, 95% CI -0.8 to -0.2). AOSLO-VA remained ≥20/20 until cones decreased to 40.2% (CI 31.1-45.5) below normal. Similarly, ETDRS-VA remained ≥20/20 until cones were 42.0% (95% CI 36.5-46.1) below normal. Cone spacing z scores negatively correlated with foveal sensitivity (ρ = -0.79, 95% CI -0.9 to -0.4) and foveal sensitivity was ≥35 dB until cones were 43.1% (95% CI 39.3-46.6) below average.ConclusionsVA and foveal cone spacing were weakly correlated until cones were reduced by 40% to 43% below normal. The relationship suggests that VA is an insensitive measure of foveal cone survival; cone spacing may be a more sensitive measure of cone loss
Recommended from our members
Loss of Foveal Cone Structure Precedes Loss of Visual Acuity in Patients With Rod-Cone Degeneration.
PurposeTo assess the relationship between cone spacing and visual acuity in eyes with rod-cone degeneration (RCD) followed longitudinally.MethodsHigh-resolution images of the retina were obtained using adaptive optics scanning laser ophthalmoscopy from 13 eyes of nine RCD patients and 13 eyes of eight healthy subjects at two sessions separated by 10 or more months (mean 765 days, range 311-1935 days). Cone spacing Z-score measured as close as possible (average <0.25°) to the preferred retinal locus was compared with visual acuity (letters read on the Early Treatment of Diabetic Retinopathy Study [ETDRS] chart and logMAR) and foveal sensitivity.ResultsCone spacing was significantly correlated with ETDRS letters read (ρ = -0.47, 95%CI -0.67 to -0.24), logMAR (ρ = 0.46, 95%CI 0.24 to 0.66), and foveal sensitivity (ρ = -0.30, 95%CI -0.52 to -0.018). There was a small but significant increase in mean cone spacing Z-score during follow-up of +0.97 (95%CI 0.57 to 1.4) in RCD patients, but not in healthy eyes, and there was no significant change in any measure of visual acuity.ConclusionsCone spacing was correlated with visual acuity and foveal sensitivity. In RCD patients, cone spacing increased during follow-up, while visual acuity did not change significantly. Cone spacing Z-score may be a more sensitive measure of cone loss at the fovea than visual acuity in patients with RCD
Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis.
PURPOSE:Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. METHODS:A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. RESULTS:Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. CONCLUSIONS AND IMPORTANCE:Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images
Recommended from our members
Cone Spacing Correlates With Retinal Thickness and Microperimetry in Patients With Inherited Retinal Degenerations.
PurposeTo determine whether high-resolution retinal imaging measures of macular structure correlate with visual function over 36 months in retinal degeneration (RD) patients and normal subjects.MethodsTwenty-six eyes of 16 RD patients and 16 eyes of 8 normal subjects were studied at baseline; 15 eyes (14 RD) and 11 eyes (6 normal) were studied 36 months later. Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) was used to identify regions of interest (ROIs) with unambiguous cones at baseline to measure cone spacing. AOSLO images were aligned with spectral-domain optical coherence tomography (SD-OCT) and fundus-guided microperimetry results to correlate structure and function at the ROIs. SD-OCT images were segmented to measure inner segment (IS) and outer segment (OS) thickness. Correlations between cone spacing, IS and OS thickness and sensitivity were assessed using Spearman correlation coefficient ρ with bootstrap analyses clustered by person.ResultsCone spacing (ρ = 0.57, P < 0.001) and macular sensitivity (ρ = 0.19, P = 0.14) were significantly correlated with eccentricity in patients. Controlling for eccentricity, cone spacing Z-scores were inversely correlated with IS (ρ = -0.29, P = 0.002) and OS thickness (ρ = -0.39, P < 0.001) in RD patients only, and with sensitivity in normal subjects (ρ = -0.22, P < 0.001) and RD patients (ρ = -0.38, P < 0.001). After 36 months, cone spacing increased (P < 0.001) and macular sensitivity decreased (P = 0.007) compared to baseline in RD patients.ConclusionsCone spacing increased and macular sensitivity declined significantly in RD patients over 36 months. High resolution images of cone structure correlated with retinal sensitivity, and may be appropriate outcome measures for clinical trials in RD
Determination of complex dielectric functions of ion implanted and implanted‐annealed amorphous silicon by spectroscopic ellipsometry
Measuring with a spectroscopic ellipsometer (SE) in the 1.8–4.5 eV photon energy region we determined the complex dielectric function (ϵ = ϵ1 + iϵ2) of different kinds of amorphous silicon prepared by self‐implantation and thermal relaxation (500 °C, 3 h). These measurements show that the complex dielectric function (and thus the complex refractive index) of implanted a‐Si (i‐a‐Si) differs from that of relaxed (annealed) a‐Si (r‐a‐Si). Moreover, its ϵ differs from the ϵ of evaporated a‐Si (e‐a‐Si) found in the handbooks as ϵ for a‐Si. If we use this ϵ to evaluate SE measurements of ion implanted silicon then the fit is very poor. We deduced the optical band gap of these materials using the Davis–Mott plot based on the relation: (ϵ2E2)1/3 ∼ (E− Eg). The results are: 0.85 eV (i‐a‐Si), 1.12 eV (e‐a‐Si), 1.30 eV (r‐a‐Si). We attribute the optical change to annihilation of point defects
The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems
We study the influence of a DC bias voltage V on quantum interference
corrections to the measured differential conductance in metallic mesoscopic
wires and rings. The amplitude of both universal conductance fluctuations (UCF)
and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger
than the Thouless energy. The enhancement persists even in the presence of
inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages
electron-phonon collisions lead to the amplitude decaying as a power law for
the UCF and exponentially for the ABE. We obtain good agreement of the
experimental data with a model which takes into account the decrease of the
electron phase-coherence length due to electron-electron and electron-phonon
scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in
Europhysics Letter
Imperfections in a two-dimensional hierarchical structure
Hierarchical and fractal designs have been shown to yield high mechanical efficiency under a variety of loading conditions. Here a fractal frame is optimized for compressive loading in a two-dimensional space. We obtain the dependence of volume required for stability against loading for which the structure is optimized and a set of scaling relationships is found. We evaluate the dependence of the Hausdorff dimension of the optimal structure on the applied loading and establish the limit to which it tends under gentle loading. We then investigate the effect of a single imperfection in the structure through both analytical and simulational techniques. We find that a single asymmetric perturbation of beam thickness, increasing or decreasing the failure load of the individual beam, causes the same decrease in overall stability of the structure. A scaling relationship between imperfection magnitude and decrease in failure loading is obtained. We calculate theoretically the limit to which the single perturbation can effect the overall stability of higher generation frames
Evaluating performance of the Revised Trauma Score as a triage instrument in the prehospital setting
- …
