2,125 research outputs found

    Star Formation History in Barred Spiral Galaxies. AGN Feedback

    Get PDF
    We present a numerical study of the impact of AGN accretion and feedback on the star formation history of barred disc galaxies. Our goal is to determine whether the effect of feedback is positive (enhanced star formation) or negative (quenched star formation), and to what extent. We performed a series of 12 hydrodynamical simulations of disc galaxies, 10 barred and 2 unbarred, with various initial gas fractions and AGN feedback prescriptions. In barred galaxies, gas is driven toward the centre of the galaxy and causes a starburst, followed by a slow decay, while in unbarred galaxies the SFR increases slowly and steadily. AGN feedback suppresses star formation near the central black hole. Gas is pushed away from the black hole, and collides head-on with inflowing gas, forming a dense ring at a finite radius where star formation is enhanced. We conclude that both negative and positive feedback are present, and these effects mostly cancel out. There is no net quenching or enhancement in star formation, but rather a displacement of the star formation sites to larger radii. In unbarred galaxies, where the density of the central gas is lower, quenching of star formation near the black hole is more efficient, and enhancement of star formation at larger radii is less efficient. As a result, negative feedback dominates. Lowering the gas fraction reduces the star formation rate at all radii, whether or not there is a bar or an AGN.Comment: 18 pages, 17 figures. Accepted for publication in MNRA

    Near-Infrared Kinetic Spectroscopy of the HO_2 and C_2H_5O_2 Self-Reactions and Cross Reactions

    Get PDF
    The self-reactions and cross reactions of the peroxy radicals HO_2 and C_2H_5O_2 and HO_2 were monitored using simultaneous independent spectroscopic probes to observe each radical species. Wavelength modulation (WM) near-infrared (NIR) spectroscopy was used to detect HO_2, and UV absorption monitored HO_2 and C_2H_5O_2. The temperature dependences of these reactions were investigated over a range of interest to tropospheric chemistry, 221−296 K. The Arrhenius expression determined for the cross reaction, k_2(T) = (6.01^(+1.95)_(−1.47)) × 10^(−13) exp((638 ± 73)/T) cm^3 molecules^(−1) s^(−1) is in agreement with other work from the literature. The measurements of the HO_2 self-reaction agreed with previous work from this lab and were not further refined.(1) The C_2H_5O_2 self-reaction is complicated by secondary production of HO_2. This experiment performed the first direct measurement of the self-reaction rate constant, as well as the branching fraction to the radical channel, in part by measurement of the secondary HO_2. The Arrhenius expression for the self-reaction rate constant is k_3(T) = (1.29^(+0.34)_(−0.27)) × 10^(−13)exp((−23 ± 61)/T) cm^3 molecules^(−1) s^(−1), and the branching fraction value is α = 0.28 ± 0.06, independent of temperature. These values are in disagreement with previous measurements based on end product studies of the branching fraction. The results suggest that better characterization of the products from RO_2 self-reactions are required

    In-between spaces of policy and practice: Voices from Prince Edward Island early childhood educators

    Get PDF
    Over the course of the past decades, the discourse, pedagogy, scope, and delivery of early learning and child care (ELCC) has undergone myriad significant changes internationally, nationally, and at local levels. Prince Edward Island (PEI), the smallest Canadian Province, has not been exempt from these transformations. By situating early childhood educators (ECEs) at the centre of ecological multilevel environments (Bronfenbrenner, 2005), this qualitative study explored how a system-wide change implemented through the Prince Edward Island Preschool Excellence Initiative (PEIPEI) has impacted and is being impacted by ECEs over time. Purposive sampling was used to invite seven early childhood educators working on provincially regulated early years centres (EYCs) to participate in individual interviews. Findings indicated that ECEs have been striving to navigate and merge the space in-between policy and practices and that after ten years, they remain in this liminal space where they continue to navigate unravelling transitions as they search for their professional identity

    Development and Characterisation of a Gas System and its Associated Slow-Control System for an ATLAS Small-Strip Thin Gap Chamber Testing Facility

    Full text link
    A quality assurance and performance qualification laboratory was built at McGill University for the Canadian-made small-strip Thin Gap Chamber (sTGC) muon detectors produced for the 2019-2020 ATLAS experiment muon spectrometer upgrade. The facility uses cosmic rays as a muon source to ionise the quenching gas mixture of pentane and carbon dioxide flowing through the sTGC detector. A gas system was developed and characterised for this purpose, with a simple and efficient gas condenser design utilizing a Peltier thermoelectric cooler (TEC). The gas system was tested to provide the desired 45 vol% pentane concentration. For continuous operations, a state-machine system was implemented with alerting and remote monitoring features to run all cosmic-ray data-acquisition associated slow-control systems, such as high/low voltage, gas system and environmental monitoring, in a safe and continuous mode, even in the absence of an operator.Comment: 23 pages, LaTeX, 14 figures, 4 tables, proof corrections for Journal of Instrumentation (JINST), including corrected Fig. 8b

    Toward Guidelines for Harvest Intensities and Regeneration Targets with Minimal Impact Upon Retained Genetic Diversity in Central Hardwood Tree Species

    Get PDF
    There is an urgent need for a coordinated and systematic approach to the in situ conservation of the genetic resources of commercially important forest tree species in the Central Hardwoods. Effective in situ management of genetic resources would benefit from clear guidelines for how many adult trees can be harvested with minimal impact on allelic diversity. We are constructing a computer model for this purpose, and present preliminary results based upon replicate harvests of a virtual forest stand consisting of 200 adult trees. Our model explores how much regeneration is needed so that there is no more than a 10 percent risk of retaining less than 90 percent of the original allelic diversity. In the absence of regeneration, up to 55 percent of the adult trees can be harvested without exceeding the 10 percent risk level. At higher harvest intensities, locally-derived regeneration is needed to replace the alleles removed from the adult population. When all 200 adult trees are harvested, the 10 percent risk level is not exceeded if there are at least 116 regenerants, provided that these are derived from pre-harvest random mating among the adults. In the presence of substantial pollen flow from a genetically differentiated outside pollen source (e.g., 10-20 percent pollen flow), the minimum amount of regeneration needed is reduced. This indicates that outside pollen can be more efficient, relative to pollen from within the stand, at replacing alleles lost from the adult population

    Development of a Surgical Workforce Access Team (SWAT) in the Battle Against COVID-19

    Get PDF
    In response to the COVID-19 pandemic, our vascular surgery division has implemented a 24/7 vascular access team to provide line placement services throughout our medical center. We believe this model allows us to maximize our skillset while providing an important service for the hospital during this crisis. Additionally, this model allows us to control our own workforce and preserve workforce availability in the likely event that some of our providers contract the disease

    Pre-calving intravaginal administration of lactic acid bacteria reduces metritis prevalence and regulates blood neutrophil gene expression after calving in dairy cattle

    Get PDF
    Metritis affects up to 40% of dairy cows and it is usually treated with antibiotics. In spite of their advantages, there is an increased concern about antibiotic resistance leading to the research of alternative methods. The aim of this study was to evaluate the effects of a combination of lactic acid bacteria (LAB) on the prevalence of metritis and modulation of endometrial and neutrophil inflammatory markers in dairy cows. One hundred and thirty-five cows were enrolled 3 week before calving and randomly assigned to three treatments. Treatment groups were: (1) two intravaginal doses of LAB/wk during 3 week pre-calving (vaginal, n = 45); (2) an intra-uterine dose, once 1 d after calving (uterine, n = 44); and (3) no intervention (CTRL, n = 45). Metritis was defined as body temperature > 39.5◩C and purulent vaginal discharge (> 50% pus), and diagnosed 6 d after calving. Blood samples were taken at d −14, −10, −7, −4, +1, +3, +6, and +14 relative to calving for non-esterified fatty acids (NEFA) analysis. At d −10, +1, +3, and +6 neutrophils were isolated from blood for gene expression analysis by RT-qPCR. Endometrium biopsies were taken from 30 cows, 15 from CTRL and 15 from the uterine group at d +1, +3, and +6 after calving for pro-inflammatory markers analysis by NanoString¼. Vaginal treatment reduced metritis prevalence (6/45) up to 58% compared with CTRL group (14/45), but there was no difference between the uterine and CTRL group. Uterine and vaginal treatments reduced blood neutrophil gene expression. Expression of pro-inflammatory markers in the endometrium did not differ between uterine and CTRL cows. Metritic cows expressed more C-X-C motif chemokine ligand 8 (CXCL8) and interleukin 1 beta (IL1B) at d 3 than healthy cows, whereas healthy cows expressed more CXCL8 at d 1 relative to calving in the endometrium. This study shows a promising potential of LAB probiotics as a preventive treatment against metritis in dairy cows.info:eu-repo/semantics/publishedVersio

    Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment

    Get PDF
    The 2019/20 Australian bushfires (or wildfires) burned the largest forested area in Australia's recorded history, with major socio‐economic and environmental consequences. Among the largest fires was the 280,000 ha Green Wattle Creek Fire which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, one of Australia's largest urban supply reservoirs delivering ~85 % of the water used in Greater Sydney. WaterNSW is the utility responsible for managing water quality in Lake Burragorang. Its postfire risk assessment, carried out in collaboration with researchers in Australia, the UK and USA, involved i) identifying pyrogenic contaminants in ash and soil; ii) quantifying ash loads and contaminant concentrations across the burned area; and iii) estimating the probability and quantity of soil, ash and associated contaminants entrainment for different rainfall scenarios. The work included refining the capabilities of the new WEPPcloud‐WATAR‐AU model (Water Erosion Prediction Project cloud‐Wildfire Ash Transport And Risk‐Australia) for predicting sediment, ash and contaminants transport, aided by outcomes from previous collaborative post‐fire research in the catchment. Approximately two weeks after the Green Wattle Creek Fire was contained, an extreme rainfall event (~276 mm in 72 h), caused extensive ash and sediment delivery into the reservoir. The risk assessment informed on‐ground monitoring and operational mitigation measures (deployment of debris‐catching booms and adjustment of the water supply system configuration), ensuring the continuity of safe water supply to Sydney. WEPPcloud‐WATAR‐AU outputs can prioritize recovery interventions for managing water quality risks by quantifying contaminants on the hillslopes, anticipating water contamination risk, and identifying areas with high susceptibility to ash and sediment transport. This collaborative interaction among scientists and water managers, aimed also at refining model capabilities and outputs to meet managers’ needs, exemplifies the successful outcomes that can be achieved at the interface of industry and science
    • 

    corecore