55 research outputs found

    Symmetrization and Entanglement of Arbitrary States of Qubits

    Full text link
    Given two arbitrary pure states ∣ϕ> |\phi> and ∣ψ> |\psi> of qubits or higher level states, we provide arguments in favor of states of the form 12(∣ψ>∣ϕ>+i∣ϕ>∣ψ>) \frac{1}{\sqrt{2}}(|\psi> |\phi> + i |\phi> |\psi>) instead of symmetric or anti-symmetric states, as natural candidates for optimally entangled states constructed from these states. We show that such states firstly have on the average a high value of concurrence, secondly can be constructed by a universal unitary operator independent of the input states. We also show that these states are the only ones which can be produced with perfect fidelity by any quantum operation designed for intertwining two pure states with a relative phase. A probabilistic method is proposed for producing any pre-determined relative phase into the combination of any two arbitrary states.Comment: 6 pages, 1 figur

    Quantum phase transitions in the Kondo-necklace model: Perturbative continuous unitary transformation approach

    Full text link
    The Kondo-necklace model can describe magnetic low-energy limit of strongly correlated heavy fermion materials. There exist multiple energy scales in this model corresponding to each phase of the system. Here, we study quantum phase transition between the Kondo-singlet phase and the antiferromagnetic long-range ordered phase, and show the effect of anisotropies in terms of quantum information properties and vanishing energy gap. We employ the "perturbative continuous unitary transformations" approach to calculate the energy gap and spin-spin correlations for the model in the thermodynamic limit of one, two, and three spatial dimensions as well as for spin ladders. In particular, we show that the method, although being perturbative, can predict the expected quantum critical point, where the gap of low-energy spectrum vanishes, which is in good agreement with results of other numerical and Green's function analyses. In addition, we employ concurrence, a bipartite entanglement measure, to study the criticality of the model. Absence of singularities in the derivative of concurrence in two and three dimensions in the Kondo-necklace model shows that this model features multipartite entanglement. We also discuss crossover from the one-dimensional to the two-dimensional model via the ladder structure.Comment: 12 pages, 6 figure

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    Quantum Renormalization Group for Ground-State Fidelity

    Full text link
    Ground-state fidelity (GSF) and quantum renormalization group theory (QRG) have proven useful tools in the study of quantum critical systems. Here we lay out a general, unified formalism of GSF and QRG; specifically, we propose a method to calculate GSF through QRG, obviating the need for calculating or approximating ground states. This method thus enhances characterization of quantum criticality as well as scaling analysis of relevant properties with system size. We illustrate the formalism in the one-dimensional Ising model in a transverse field and the anisotropic spin-1/2 Heisenberg model.Comment: 5 pages and 5 figures (revised

    On a suggestion relating topological and quantum mechanical entanglements

    Full text link
    We analyze a recent suggestion \cite{kauffman1,kauffman2} on a possible relation between topological and quantum mechanical entanglements. We show that a one to one correspondence does not exist, neither between topologically linked diagrams and entangled states, nor between braid operators and quantum entanglers. We also add a new dimension to the question of entangling properties of unitary operators in general.Comment: RevTex, 7 eps figures, to be published in Phys. Lett. A (2004

    Bound entanglement in quantum phase transitions

    Full text link
    We investigate quantum phase transitions in which a change in the type of entanglement from bound entanglement to either free entanglement or separability may occur. In particular, we present a theoretical method to construct a class of quantum spin-chain Hamiltonians that exhibit this type of quantum criticality. Given parameter-dependent two-site reduced density matrices (with prescribed entanglement properties), we lay out a reverse construction for a compatible pure state for the whole system, as well as a class of Hamiltonians for which this pure state is a ground state. This construction is illustrated through several examples.Comment: 9 pages, 8 figure

    Quantum Process Tomography: Resource Analysis of Different Strategies

    Get PDF
    Characterization of quantum dynamics is a fundamental problem in quantum physics and quantum information science. Several methods are known which achieve this goal, namely Standard Quantum Process Tomography (SQPT), Ancilla-Assisted Process Tomography (AAPT), and the recently proposed scheme of Direct Characterization of Quantum Dynamics (DCQD). Here, we review these schemes and analyze them with respect to some of the physical resources they require. Although a reliable figure-of-merit for process characterization is not yet available, our analysis can provide a benchmark which is necessary for choosing the scheme that is the most appropriate in a given situation, with given resources. As a result, we conclude that for quantum systems where two-body interactions are not naturally available, SQPT is the most efficient scheme. However, for quantum systems with controllable two-body interactions, the DCQD scheme is more efficient than other known QPT schemes in terms of the total number of required elementary quantum operations.Comment: 15 pages, 5 figures, published versio

    Quantum adiabatic machine learning

    Full text link
    We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. We apply and illustrate this approach in detail to the problem of software verification and validation.Comment: 21 pages, 9 figure

    Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics

    Full text link
    We propose an interesting scheme for distributed orbital state quantum cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic ensembles which consist of identical three-level atoms are trapped in distant cavities connected by a single-mode integrated optical star coupler. These qubits can be manipulated through appropriate modulation of the coupling constants between atomic ensemble and classical field, and the cavity decay can be largely suppressed as the number of atoms in the ensemble qubits increases. The fidelity of each cloned qubit can be obtained with analytic result. The present scheme provides a new way to construct the quantum communication network.Comment: 5 pages, 4 figure
    • …
    corecore