449 research outputs found

    Expansion and Hadronization of a Chirally Symmetric Quark--Meson Plasma

    Get PDF
    Using a chirally symmetric Lagrangian, which contains quarks as elementary degrees of freedom and mesons as bound states, we investigate the expansion and hadronization of a fireball, which initially contains only quarks and produces mesons by collisions. For this model, we study the time scales of expansion and thermal and chemical equilibration. We find that the expansion progresses relatively fast, leaving not necessarily enough time to establish thermal and chemical equilibrium. Mesons are produced in the bulk of the fireball rather than at a surface, at a temperature below the Mott temperature. Initial density fluctuations become amplified during the expansion. These observations challenge the applicability of hydrodynamical approaches to the expansion of a quark-gluon plasma

    A Non-Equilibrium Defect-Unbinding Transition: Defect Trajectories and Loop Statistics

    Full text link
    In a Ginzburg-Landau model for parametrically driven waves a transition between a state of ordered and one of disordered spatio-temporal defect chaos is found. To characterize the two different chaotic states and to get insight into the break-down of the order, the trajectories of the defects are tracked in detail. Since the defects are always created and annihilated in pairs the trajectories form loops in space time. The probability distribution functions for the size of the loops and the number of defects involved in them undergo a transition from exponential decay in the ordered regime to a power-law decay in the disordered regime. These power laws are also found in a simple lattice model of randomly created defect pairs that diffuse and annihilate upon collision.Comment: 4 pages 5 figure

    Direct observation of twist mode in electroconvection in I52

    Full text link
    I report on the direct observation of a uniform twist mode of the director field in electroconvection in I52. Recent theoretical work suggests that such a uniform twist mode of the director field is responsible for a number of secondary bifurcations in both electroconvection and thermal convection in nematics. I show here evidence that the proposed mechanisms are consistent with being the source of the previously reported SO2 state of electroconvection in I52. The same mechanisms also contribute to a tertiary Hopf bifurcation that I observe in electroconvection in I52. There are quantitative differences between the experiment and calculations that only include the twist mode. These differences suggest that a complete description must include effects described by the weak-electrolyte model of electroconvection

    Can remifentanil use in obstetrics be improved by optimal patient-controlled analgesia bolus timing?

    Get PDF
    Background The safety of patient-controlled i.v. analgesia (PCA) with remifentanil for obstetrical analgesia remains a matter of concern. The efficacy of remifentanil bolus application, that is, the coincidence between pain and remifentanil effect-site concentration, may be improved by forecasting contractions, but it is not known whether such a technique would also improve safety. Methods We recorded pain intensity during labour continuously using a handheld dynamometer in 43 parturients. Using these data, we compared different models in their ability to predict future contractions. In addition, we modelled remifentanil effect-site concentration using three simulated modes of bolus administration, with and without prediction of future contractions. Results The average duration of pain during contractions recorded by the dynamometer was 45 [14 standard deviation (sd)] s. The time interval between painful contractions was highly variable, with a mean of 151 (31 sd) s during the first and 154 (52 sd) s during the second recording. Using a simple algorithm (three-point moving average), the sd of the difference between predicted and observed inter-contraction intervals can be reduced from 0.95 to 0.79 min. However, the coincidence between remifentanil concentration and pain during contraction is not substantially improved when using these models to guide remifentanil bolus application. Conclusions Because of the large variability of inter-contraction intervals, the use of prediction models will not influence the mean remifentanil concentration in-between contractions. Using models predicting future contractions to improve the timing of remifentanil PCA bolus administration will not diminish the need of continuous clinical surveillance and other safety measure

    Dislocation Dynamics in an Anisotropic Stripe Pattern

    Full text link
    The dynamics of dislocations confined to grain boundaries in a striped system are studied using electroconvection in the nematic liquid crystal N4. In electroconvection, a striped pattern of convection rolls forms for sufficiently high driving voltages. We consider the case of a rapid change in the voltage that takes the system from a uniform state to a state consisting of striped domains with two different wavevectors. The domains are separated by domain walls along one axis and a grain boundary of dislocations in the perpendicular direction. The pattern evolves through dislocation motion parallel to the domain walls. We report on features of the dislocation dynamics. The kinetics of the domain motion are quantified using three measures: dislocation density, average domain wall length, and the total domain wall length per area. All three quantities exhibit behavior consistent with power law evolution in time, with the defect density decaying as t1/3t^{-1/3}, the average domain wall length growing as t1/3t^{1/3}, and the total domain wall length decaying as t1/5t^{-1/5}. The two different exponents are indicative of the anisotropic growth of domains in the system.Comment: 8 figures: 7 jpeg and 1 pd

    Vacancy complexes in nonequilibrium germanium-tin semiconductors

    Full text link
    Understanding the nature and behavior of vacancy-like defects in epitaxial GeSn metastable alloys is crucial to elucidate the structural and optoelectronic properties of these emerging semiconductors. The formation of vacancies and their complexes is expected to be promoted by the relatively low substrate temperature required for the epitaxial growth of GeSn layers with Sn contents significantly above the equilibrium solubility of 1 at.%. These defects can impact both the microstructure and charge carrier lifetime. Herein, to identify the vacancy-related complexes and probe their evolution as a function of Sn content, depth-profiled pulsed low-energy positron annihilation lifetime spectroscopy and Doppler broadening spectroscopy were combined to investigate GeSn epitaxial layers with Sn content in the 6.5-13.0 at.% range. The samples were grown by chemical vapor deposition method at temperatures between 300 and 330 {\deg}C. Regardless of the Sn content, all GeSn samples showed the same depth-dependent increase in the positron annihilation line broadening parameters, which confirmed the presence of open volume defects. The measured average positron lifetimes were the highest (380-395 ps) in the region near the surface and monotonically decrease across the analyzed thickness, but remain above 350 ps. All GeSn layers exhibit lifetimes that are 85 to 110 ps higher than the Ge reference layers. Surprisingly, these lifetimes were found to decrease as Sn content increases in GeSn layers. These measurements indicate that divacancies are the dominant defect in the as-grown GeSn layers. However, their corresponding lifetime was found to be shorter than in epitaxial Ge thus suggesting that the presence of Sn may alter the structure of divacancies. Additionally, GeSn layers were found to also contain a small fraction of vacancy clusters, which become less important as Sn content increases

    Temporal Modulation of the Control Parameter in Electroconvection in the Nematic Liquid Crystal I52

    Full text link
    I report on the effects of a periodic modulation of the control parameter on electroconvection in the nematic liquid crystal I52. Without modulation, the primary bifurcation from the uniform state is a direct transition to a state of spatiotemporal chaos. This state is the result of the interaction of four, degenerate traveling modes: right and left zig and zag rolls. Periodic modulations of the driving voltage at approximately twice the traveling frequency are used. For a large enough modulation amplitude, standing waves that consist of only zig or zag rolls are stabilized. The standing waves exhibit regular behavior in space and time. Therefore, modulation of the control parameter represents a method of eliminating spatiotemporal chaos. As the modulation frequency is varied away from twice the traveling frequency, standing waves that are a superposition of zig and zag rolls, i.e. standing rectangles, are observed. These results are compared with existing predictions based on coupled complex Ginzburg-Landau equations
    corecore