899 research outputs found
A Dodecalogue of Basic Didactics from Applications of Abstract Differential Geometry to Quantum Gravity
We summarize the twelve most important in our view novel concepts that have
arisen, based on results that have been obtained, from various applications of
Abstract Differential Geometry (ADG) to Quantum Gravity (QG). The present
document may be used as a concise, yet informal, discursive and peripatetic
conceptual guide-cum-terminological glossary to the voluminous technical
research literature on the subject. In a bonus section at the end, we dwell on
the significance of introducing new conceptual terminology in future QG
research by means of `poetic language'Comment: 16 pages, preliminary versio
Loop quantum black hole
In this paper we consider the Kantowski-Sachs space-time in Ashtekar
variables and the quantization of this space-time starting from the complete
loop quantum gravity theory. The Kanthowski-Sachs space-time coincides with the
Schwarzschild black hole solution inside the horizon. By studying this model we
can obtain information about the black hole singularity and about the dynamics
across the point r=0. We studied this space-time in ADM variables in two
previous papers where we showed that the classical black hole singularity
disappears in quantum theory. In this work we study the same model in Ashtekar
variables and we obtain a regular space-time inside the horizon region and that
the dynamics can be extend further the classical singularity.Comment: 12 pages, latex. We introduce and we calculate the spectrum of the
operator 1/|E
Algebraic description of spacetime foam
A mathematical formalism for treating spacetime topology as a quantum
observable is provided. We describe spacetime foam entirely in algebraic terms.
To implement the correspondence principle we express the classical spacetime
manifold of general relativity and the commutative coordinates of its events by
means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the
limit essentially correcte
Nanoporous Materials in Atmosphere Revitalization
Atmospheric Revitalization (AR) is the term the National Aeronautics and Space Administration (NASA) uses to encompass the engineered systems that maintain a safe, breathable gaseous atmosphere inside a habitable space cabin. An AR subsystem is a key part of the Environmental Control and Life Support (ECLS) system for habitable space cabins. The ultimate goal for AR subsystem designers is to 'close the loop', that is, to capture gaseous human metabolic products, specifically water vapor (H2O) and Carbon dioxide (CO2), for maximal Oxygen (o2) recovery and to make other useful resources from these products. The AR subsystem also removes trace chemical contaminants from the cabin atmosphere to preserve cabin atmospheric quality, provides O2 and may include instrumentation to monitor cabin atmospheric quality. Long duration crewed space exploration missions require advancements in AR process technologies in order to reduce power consumption and mass and to increase reliability compared to those used for shorter duration missions that are typically limited to Low Earth Orbit. For example, current AR subsystems include separate processors and process air flow loops for removing metabolic CO2 and volatile organic tract contaminants (TCs). Physical adsorbents contained in fixed, packed beds are employed in these processors. Still, isolated pockets of high carbon dioxide have been suggested as a trigger for crew headaches and concern persists about future cabin ammonia (NH3) levels as compared with historical flights. Developers are already focused on certain potential advancements. ECLS systems engineers envision improving the AR subsystem by combining the functions of TC control and CO2 removal into a single regenerable process and moving toward structured sorbents - monoliths - instead of granular material. Monoliths present a lower pressure drop and eliminate particle attrition problems that result from bed containment. New materials and configurations offer promise for lowering cabin levels of CO2 and NH3 as well as reducing power requirements and increasing reliability. This chapter summarizes the challenges faced by ECLS system engineers in pursuing these goals, and the promising materials developments that may be part of the technical solution for challenges of crewed space exploration beyond LEO
`Iconoclastic', Categorical Quantum Gravity
This is a two-part, `2-in-1' paper. In Part I, the introductory talk at
`Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international
theoretical physics conference is presented in paper form (without references).
In Part II, the more technical talk, originally titled ``Abstract Differential
Geometric Excursion to Classical and Quantum Gravity'', is presented in paper
form (with citations). The two parts are closely entwined, as Part I makes
general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic
Approaches to Quantum Gravity'' international theoretical physics conference,
Athens, Greece (summer 2004
Thermal effects on electron-phonon interaction in silicon nanostructures
Raman spectra from silicon nanostructures, recorded using excitation laser
power density of 1.0 kW/cm^2, is employed here to reveal the dominance of
thermal effects at temperatures higher than the room temperature. Room
temperature Raman spectrum shows only phonon confinement and Fano effects.
Raman spectra recorded at higher temperatures show increase in FWHM and
decrease in asymmetry ratio with respect to its room temperature counterpart.
Experimental Raman scattering data are analyzed successfully using theoretical
Raman line-shape generated by incorporating the temperature dependence of
phonon dispersion relation. Experimental and theoretical temperature dependent
Raman spectra are in good agreement. Although quantum confinement and Fano
effects persists, heating effects start dominating at higher temperatures than
room tempaerature.Comment: 9 Pages, 3 Figures and 1 Tabl
Comparison of the Electronic Structures and Energetics of Ferroelectric LiNbO3 and LiTaO3
This paper explains the origin of the ferroelectric instability in LiNbO3 and
LiTaO3 and compares the electronic structures and energetics of the two
materials.Comment: 31 pages, 11 Postscript figure
GreenCrowd: Toward a Holistic Algorithmic Crowd Charging Framework
Crowd charging represents an alternative peer-to-peer energy replenishment option for mobile users to align with the circular economy paradigm. Following this option, users bound by finite resource capacity utilize the energy from external to the crowd wireless or wired energy sources (such as shared chargers), and internal to the crowd energy sources (such as mobile devices, via wireless power transfer). If designed carefully, such utilization can boost the energy availability of users and provide energy ubiquitously to their devices for making them functional for longer. This article proposes the GreenCrowd framework, introducing a privacy-by-design in the digital domain crowd charging process, the architecture of which incorporates multiple crowd-* components, such as online social information exploitation, algorithmic battery aging mitigation, user reward mechanisms, and advanced decision making. The primary aim of article is to present the technological and applicative requirements and constraints of GreenCrowd, and provide practical evidence on its feasibility
`Third' Quantization of Vacuum Einstein Gravity and Free Yang-Mills Theories
Based on the algebraico-categorical (:sheaf-theoretic and sheaf
cohomological) conceptual and technical machinery of Abstract Differential
Geometry, a new, genuinely background spacetime manifold independent, field
quantization scenario for vacuum Einstein gravity and free Yang-Mills theories
is introduced. The scheme is coined `third quantization' and, although it
formally appears to follow a canonical route, it is fully covariant, because it
is an expressly functorial `procedure'. Various current and future Quantum
Gravity research issues are discussed under the light of 3rd-quantization. A
postscript gives a brief account of this author's personal encounters with
Rafael Sorkin and his work.Comment: 43 pages; latest version contributed to a fest-volume celebrating
Rafael Sorkin's 60th birthday (Erratum: in earlier versions I had wrongly
written that the Editor for this volume is Daniele Oriti, with CUP as
publisher. I apologize for the mistake.
- …
