17 research outputs found

    PSY33 PROCESS MEASUREMENT AND CALCULATION IN IV-PCA AT UNIVERSITY HOSPITAL OULU FINLAND

    Get PDF

    Enhanced pre-treatment of cellulose pulp prior to dissolution into NaOH/ZnO

    No full text
    As a result of the constantly growing demand for textile fibres interest in utilising cellulose pulps for manufacturing regenerated cellulose fibres is growing. One promising water-based process for the manufacture of regenerated cellulosic products is the Biocelsol process based on an NaOH/ZnO solvent system. The drawback of the Biocelsol process is the need for pre-treatment of the pulp, i.e. long mechanical pre-treatment (up to 5 h) followed by a 2-3-h enzymatic hydrolysis utilising a rather high amount of cellulolytic enzymes. In this work more efficient conditions to carry out the pre-treatment of cellulose pulp prior to dissolution into NaOH/ZnO are presented. Based on the results, cellulase treatment, when carried out in an extruder, can be used to effectively open up and fibrillate the fibres without completely destroying the fibre structure. The molar mass of the pulp treated enzymatically in an extruder was 14 % lower as compared to the state-of-the-art-treated cellulose. As a consequence, the alkaline solutions prepared from the pulp treated enzymatically in an extruder had clearly lower dope viscosities regarding the cellulose content than the solutions prepared from the state-of-the-art-treated pulp. This enabled increasing the cellulose content in the dope up to 7 % (w/w) without increasing the dope viscosity

    The effect of the outermost fibre layers on solubility of dissolving grade pulp

    No full text
    Dissolving pulps are used to manufacture various cellulose derived products through cellulose dissolution. Solubility of cellulose pulp has been claimed to be strongly dependent on the porosity development, the degree of polymerisation and the pulp viscosity. The removal of external cell walls has been proposed to have a key role in the pulp solubility. In this paper, the effect of the outermost surface layers on the solubility of a dissolving grade pulp was studied. Furthermore the effect of mechanical peeling and combined mechanical and enzymatic treatment on pulp solubility was compared. Based on the results combined mechanical and enzymatic treatment efficiently opens up the fibre structure and has a clear positive effect on the solubility of dissolving pulp. It seems that long fibre fraction is less accessible to solvent chemicals than the other pulp fractions. Mechanical peeling of outer fibre layers does not improve fibre dissolution to NaOH/ZnO. Thus, it seems that peeling alone is not a sufficient pre-treatment prior to dissolution. The results also revealed that the peeling treatment does not enhance the effects of enzymes as the studied mechanical treatment does
    corecore