350 research outputs found

    Dynamic magnetic response of infinite arrays of ferromagnetic particles

    Get PDF
    Recently developed techniques to find the eigenmodes of a ferromagnetic particle of arbitrary shape, as well as the absorption in the presence of an inhomogeneous radio-frequency field, are extended to treat infinite lattices of such particles. The method is applied to analyze the results of recent FMR experiments, and yields substantially good agreement between theory and experiment

    Slow, Steady-State Transport with "Loading" and Bulk Reactions: the Mixed Ionic Conductor La2_2CuO4+δ_{4+\delta}

    Full text link
    We consider slow, steady transport for the normal state of the superconductor La2_2CuO4+δ_{4+\delta} in a one-dimensional geometry, with surface fluxes sufficiently general to permit oxygen to be driven into the sample (``loaded'') either by electrochemical means or by high oxygen partial pressure. We include the bulk reaction O\toO2+2h^{2-}+2h, where neutral atoms (aa) go into ions (ii) and holes (hh). For slow, steady transport, the transport equations simplify because the bulk reaction rate density rr and the bulk loading rates tn\partial_t n then are uniform in space and time. All three fluxes jj must be specified at each surface, which for a uniform current density JJ corresponds to five independent fluxes. These fluxes generate two types of static modes at each surface and a bulk response with a voltage profile that varies quadratically in space, characterized by JJ and the total oxygen flux jOj_O (neutral plus ion) at each surface. One type of surface mode is associated with electrical screening; the other type is associated both with diffusion and drift, and with chemical reaction (the {\it diffusion-reaction mode}). The diffusion-reaction mode is accompanied by changes in the chemical potentials μ\mu, and by reactions and fluxes, but it neither carries current (J=0) nor loads the system chemically (jO=0j_O=0). Generation of the diffusion-reaction mode may explain the phenomenon of ``turbulence in the voltage'' often observed near the electrodes of other mixed ionic electronic conductors (MIECs).Comment: 11 pages, 1 figur

    Superflow in Solid 4He

    Full text link
    Kim and Chan have recently observed Non-Classical Rotational Inertia (NCRI) for solid 4^4He in Vycor glass, gold film, and bulk. Their low TT value of the superfluid fraction, ρs/ρ0.015\rho_{s}/\rho\approx0.015, is consistent with what is known of the atomic delocalization in this quantum solid. By including a lattice mass density ρL\rho_{L} distinct from the normal fluid density ρn\rho_{n}, we argue that ρs(T)ρs(0)ρn(T)\rho_{s}(T)\approx\rho_{s}(0)-\rho_{n}(T), and we develop a model for the normal fluid density ρn\rho_{n} with contributions from longitudinal phonons and ``defectons'' (which dominate). The Bose-Einstein Condensation (BEC) and macroscopic phase inferred from NCRI implies quantum vortex lines and quantum vortex rings, which may explain the unusually low critical velocity and certain hysteretic phenomena.Comment: 4 page pdf, 1 figur

    Double Exchange in a Magnetically Frustrated System

    Full text link
    This work examines the magnetic order and spin dynamics of a double-exchange model with competing ferromagnetic and antiferromagnetic Heisenberg interactions between the local moments. The Heisenberg interactions are periodically arranged in a Villain configuration in two dimensions with nearest-neighbor, ferromagnetic coupling JJ and antiferromagnetic coupling ηJ-\eta J. This model is solved at zero temperature by performing a 1/S1/\sqrt{S} expansion in the rotated reference frame of each local moment. When η\eta exceeds a critical value, the ground state is a magnetically frustrated, canted antiferromagnet. With increasing hopping energy tt or magnetic field BB, the local moments become aligned and the ferromagnetic phase is stabilized above critical values of tt or BB. In the canted phase, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. Due to a change in the topology of the Fermi surface from closed to open, phase separation occurs in a narrow range of parameters in the canted phase. In zero field, the long-wavelength spin waves are isotropic in the region of phase separation. Whereas the average spin-wave stiffness in the canted phase increases with tt or η\eta , it exhibits a more complicated dependence on field. This work strongly suggests that the jump in the spin-wave stiffness observed in Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4 at a field of 3 T is caused by the delocalization of the electrons rather than by the alignment of the antiferromagnetic regions.Comment: 28 pages, 12 figure

    Spin Resonance and dc Current Generation in a Quantum Wire

    Get PDF
    We show that in a quantum wire the spin-orbit interaction leads to a narrow spin resonance at low temperatures, even in the absence of an external magnetic field. Resonance absorption by linearly polarized radiation gives a dc spin current; resonance absorption by circularly polarized radiation gives a dc electric current or magnetization

    Adiabatic Domain Wall Motion and Landau-Lifshitz Damping

    Get PDF
    Recent theory and measurements of the velocity of current-driven domain walls in magnetic nanowires have re-opened the unresolved question of whether Landau-Lifshitz damping or Gilbert damping provides the more natural description of dissipative magnetization dynamics. In this paper, we argue that (as in the past) experiment cannot distinguish the two, but that Landau-Lifshitz damping nevertheless provides the most physically sensible interpretation of the equation of motion. From this perspective, (i) adiabatic spin-transfer torque dominates the dynamics with small corrections from non-adiabatic effects; (ii) the damping always decreases the magnetic free energy, and (iii) microscopic calculations of damping become consistent with general statistical and thermodynamic considerations

    Benefits and harms of cervical screening from age 20 years compared with screening from age 25 years

    Get PDF
    This work is supported by Cancer Research UK (C8162/10406 and C8162/12537). The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication

    Smecticlike phase for modulated XY spins in two dimensions

    Get PDF
    The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate{IC}) spiral and commensurate{C} antiferromagnetic (AF) phases, in the regime where a C-IC transition occurs. Using fluctuating boundary conditions and specific histogram techniques, a detailed Monte Carlo (MC) study reveals more structure in the phase diagram than found in previous MC simulations of the full parameter space. On the (C) side, equilibrium configurations consist of alternating stripes of spiral phases of opposite chirality separated by walls of the (C) phase. For this same parameter regime, thermodynamic quantities are computed analytically using the NSCHA, a generalization of the self consistent harmonic approximation appropriate for chiral systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase. This suggests that the state is spatially inhomogeneous, consistent with the present MC result: it resembles the smectic-A phase of liquid crystals, and its existence implies that the Lifshitz point is at T=0{T=0} for modulated XY spins in 2D. The connection between frustrated XY systems and the vortex state of strong type II superconductors suggests that the smectic phase may correspond to a vortex liquid phase of superconducting layers.Comment: Single Postscript file containing 24 pages of text and 8 figures. To appear in May 1 issue of Phys. Rev. B, Vol. 5

    Simulations of Pregalactic Structure Formation with Radiative Feedback

    Get PDF
    We present results from three-dimensional hydrodynamic simulations of the high redshift collapse of pregalactic clouds including feedback effects from a soft H2 photodissociating UV radiation field. The simulations use an Eulerian adaptive mesh refinement technique to follow the nonequilibrium chemistry of nine chemical species with cosmological initial conditions drawn from a popular Lambda-dominated cold dark matter model. The results confirm that the soft UV background can delay the cooling and collapse of small halos (~10^6 Msun). For reasonable values of the photo-dissociating flux, the H2 fraction is in equilibrium throughout most of the objects we simulate. We determine the mass threshold for collapse for a range of soft-UV fluxes and also derive a simple analytic expression. Continuing the simulations beyond the point of initial collapse demonstrates that the fraction of gas which can cool depends mostly on the virial mass of the halo and the amount of soft-UV flux, with remarkably little scatter. We parameterize this relation, for use in semi-analytic models.Comment: 18 pages, 7 figures, submitted to Ap

    Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research

    Full text link
    The possibility of a supersolid state of matter, i.e., a crystalline solid exhibiting superfluid properties, first appeared in theoretical studies about forty years ago. After a long period of little interest due to the lack of experimental evidence, it has attracted strong experimental and theoretical attention in the last few years since Kim and Chan (Penn State, USA) reported evidence for nonclassical rotational inertia effects, a typical signature of superfluidity, in samples of solid 4He. Since this "first observation", other experimental groups have observed such effects in the response to the rotation of samples of crystalline helium, and it has become clear that the response of the solid is extremely sensitive to growth conditions, annealing processes, and 3He impurities. A peak in the specific heat in the same range of temperatures has been reported as well as anomalies in the elastic behaviour of solid 4He with a strong resemblance to the phenomena revealed by torsional oscillator experiments. Very recently, the observation of unusual mass transport in hcp solid 4He has also been reported, suggesting superflow. From the theoretical point of view, powerful simulation methods have been used to study solid 4He, but the interpretation of the data is still rather difficult; dealing with the question of supersolidity means that one has to face not only the problem of the coexistence of quantum coherence phenomena and crystalline order, exploring the realm of spontaneous symmetry breaking and quantum field theory, but also the problem of the role of disorder, i.e., how defects, such as vacancies, impurities, dislocations, and grain boundaries, participate in the phase transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
    corecore