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Abstract 

 Recently developed techniques to find the eigenmodes of a ferromagnetic particle of arbitrary 

shape, as well as the absorption in the presence of an inhomogeneous radio-frequency field, are 

extended to treat infinite lattices of such particles. The method is applied to analyze the results of 

recent FMR experiments, and yields substantially good agreement between theory and experiment. 

 

1.  Introduction 

Studies of the resonant modes of magnetic systems have been conducted for over 70 years, dating 

from the work of Landau and Lifshitz. Currently most experiments involve either Ferromagnetic 

Resonance (FMR) (in which a magnetic sample is subjected to a RF field with a fixed frequency while 

monitoring the energy absorption as the magnitude and direction of the external DC magnetic field are 

varied), or Brillouin Light Scattering (in which the frequency shift arising from inelastic scattering from 

thermally excited spin-wave modes is monitored for a sample illuminated by laser light).  For ellipsoidal 

bodies and limiting shapes there of (e.g., cylinders and discs), analytical solutions for the resonant 

frequencies can be obtained, allowing comparisons between theory and experiment. However, such 

solutions are unattainable for the majority of sample shapes, with very few exceptions such as the vortex 

gyroscopic mode in discs1.  

 The mode structure of magnetic nanoparticles presents another complication in that 

experiments are typically done on patterned arrays containing tens of thousands of such particles single 
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particles, rather than single particles, in order to obtain a stronger signal that can be easily measured (we 

note in passing that arrays are also relevant to hard-disc information storage systems that typically involve 

of order 1012 nanoparticles2).  Until now, numerical simulations of such arrays were generally deemed to 

be impossible; however, the approach introduced below allows some array properties to be calculated.  

Recently a method was developed to calculate the modes of a ferromagnetic particle having an 

arbitrary shape.3 It was based on the assumption that a body can be represented by an array of macro-spins, 

each consisting of many true spins, which fill that body on a specified spatial grid (an approximation 

sometimes called the “discrete dipole approximation”).  The spin dynamics is then assumed to follow the 

Landau-Lifshitz (LL) equation, which we write as4  

 
  

dmi
dt

= −γmi × hi
total −

βγ

Ms
mi × mi × hi

total( );       (1.1)  

where γ , Ms , and β  are the gyromagnetic ratio, saturation magnetization, and (dimensionless) damping 

parameter, respectively, and  hi
total  is the total effective field experienced by the ith macro-spin in the array. 

Each spin feels the effect of the others through the long-range dipole-dipole field hi
dipole , and the short-

range exchange field hi
exchange ; in addition they interact with the external magnetic field H0 , and, if 

present, an anisotropy field anisotropy
ih that we will neglect in what follows.  Hence, we have 

hi
total = hi

dipole + hi
exchange + H0 . We linearize Eq. (1) by writing mi = mi

(0) + mi
(1)  and hi = hi

(0) + hi
(1) . 

Combining these expressions and retaining only first-order terms yields 
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m h m h m m h m h .  (1.2)  

 We next assume solutions of the form mi
(1)(t) = mi

(1)e−iωnt (solutions are always expressed as 

complex-conjugate pairs and are hence real).  The resulting coupled equations have the structure of a 

vector eigenvalue problem.  The eigenvalues, ωn , give the frequencies of the (generally mixed) 

dipolar/spin-wave modes; the number of such modes is equal to the total number of dipoles N, used to 

discretize the nanoparticle.  As a byproduct of the diagonalization process, one also obtains the 



eigenvectors,   Vn (i) , of the associated matrix, which give the vector amplitude and phase of each spin in 

the nanoparticle for a given mode, n. By setting the exchange constant J = 0 we can eliminate the spin 

wave modes, leaving only the Walker modes.5  

  The eigenvectors can be used to solve the inhomogeneous LL equation one has in the presence of 

an external drive field   hi
rf (t) = hi

rf (0)e−iωt acting on the ith spin; the only constraint on the position 

dependence of the drive field is that it satisfy Maxwell’s equations in the quasi-static limit (the same being 

true for the static external field)6,7.  This, in turn, allows a direct evaluation of the non-local (i-, j- 

dependent) magnetic susceptibility, 
 
χij(ω) , and the linear response of the system (a detailed derivation can 

be found in our previous work8).  One then has  

 
  
mi(t) =

j
∑ χij(ω) ⋅h j

rf (t) ,         (1.3a) 

or in vector-component form, 

 
 
miα

(1) = iViα
(k) VLlβ

(k)∗γεβσχmlσ
(0)hlχ

(rf )

ω(k) − ω
e−iωt .        (1.3b) 

Here the summation convention is assumed, where Roman letters correspond to individual dipoles, Greek 

letters correspond to spin and field components, VLlβ
(k)∗ is a “left eigenvector” of Eq.(1.3) (required since the 

right eigenvectors alone do not form a complete orthonormal basis of solutions for the matrix in Eq. (1.2), 

which is non-Hermitian) and βσχε is a Levi-Civita symbol.  The imaginary component of 
 
χij(ω)  allows 

one to calculate the resonant absorption through the expression 
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 where ϑ  is a volume of a single discretization cell. 

2.  Modes in periodic lattices of nanoparticles 

 Although the eigenvalue method provides a new and powerful opportunity for the numerical 

analysis of spin waves, it has not yet addressed the problem of patterned arrays of magnetic nanoparticles 



Most treatments to date neglect the interaction between individual nanoparticles, because it is 

computationally demanding to directly simulate even small (10 × 10) arrays of magnetic nanoparticles, 

whereas typical experiments can involve more than 10,000 nanoparticles.  Numerous attempts have been 

made to lift this restriction. Analytical formulas have been constructed for fields produced in an array of 

uniformly magnetized square nanoparticles;9 however, such formulas are not available for nanoparticles of 

other shapes or for a non-uniform magnetization.  

Here we propose a different method for dealing with arrays of arbitrarily shaped magnetic 

nanoparticles, based on two assumptions. First, we assume that for sufficiently high external magnetic 

fields (typically 300 Oe and above for a soft material like permalloy) all of the nanoparticles have 

essentially the same internal distribution of the magnetization in equilibrium, although this distribution 

may be nonuniform within a given particle.  Second, we assume that sufficiently large arrays may be 

regarded as infinite, so the eigenvectors associated with the modes have the Bloch-Floquet10 form 

represented as    Vk n (i)eik ⋅R . Related approach was described by Giovannini et al11.  Here   Vkn (i) , which is 

strictly periodic, expresses the distribution of phases and amplitudes inside the nanoparticles, i is an index 

numbering all spins in a given unit cell, k is a continuous Bloch wave vector, and n is a band index 

numbering all the modes of an individual nanoparticle; R = naa + nbb is the set of all two-dimensional, 

real-space lattice vectors where  na  and  nb  are integers and a and b are the primitive translation vectors of 

the two-dimensional Bravais lattice (see Fig. 1).  A mode frequency, ωkn  is associated with each Bloch 

state  (a similar assumption is made in studying the phonons in an infinite system with many atoms per unit 

cell).  For our array, the fields entering Eq. (1.2) can be written as 

  

hiα
(0,1) =  Aαβ(ri − rj − naa − nbb)mβ

(0,1) rj,na ,nb( )
nb ,na

∑
β,rj

∑     (2.1)  

where  hiα
(0)  and  hiα

(1)   are the static and dynamic fields respectively, Roman letters refer to individual 

dipoles in the same cell, and Greek letters to different coordinate projections; 
 
Aαβ  is a demagnetization 



tensor that gives the field at point   ri  due to a magnetic dipole at point rj  in the same cell and, due to the 

sum over  na  and  nb , all other unit cells (in one and two dimensions these sums are convergent).  Since the 

number of nanoparticles is typically large, one can impose periodic boundary conditions.  

 The static magnetization is assumed to be strictly periodic, i.e., mβ
(0) rj,na ,nb( )= m β

(0)(rj,0,0)  for 

arbitrary  na  and  nb ; on the other hand for the dynamic fields mβ
(1) rj,Na ,Nb( )= Vkn (rj)e

ik⋅ Naa+Nbb( ) 

where  Na  and Nb  are the number of unit cells in the a and b directions over which the lattice is assumed 

to repeat itself. The allowed values of k along the a- and b-directions are then given by 

 ka = 2πma / Na  and  kb = 2πmb / Nb  where ma  and mb  are also integers.  Eq. (2.1) can then be 

simplified by introducing an effective k-dependent demagnetization tensor Aαβ
k (ri − rj)  which is written 

 

  

Aαβ
k (ri − rj) = Aαβ (ri − rj − naa − nbb)

na ,nb

∑  eik ⋅ naa+nbb( )     (2.2)  

where k = 0 in Eq. (2.2) corresponds to the static demagnetization tensor.  Then the eigenvalue problem 

given by Eq. (1.2) takes on the same form as for a single nanoparticle: 

 

  

iωVkn (ri ) = γ mi
(0) × Ak(ri − rj)Vkn (rj)

rj

∑













+ Vkn (ri ) × hi

(0)















+ damping   (2.3) 

with two important differences: the static and dynamic magnetic fields are now due to all of the 

nanoparticles in the array and, in addition, depend upon the value of the wavevector k; i.e., we must do a 

separate diagonalization for each value of the wave vector.  In spite of this, the formalism represents a 

great computational simplification over that required for finite arrays where Bloch’s theorem does not 

apply.  

 

3.  Applications to periodic disc arrays 



We now use the above formalism to analyze the results of an experiment12 performed on a 400 × 

400 micrometer array of Permalloy nanoparticles, 500nm diameter, 85nm thick, and 600nm between 

centers (see Figure 2). The external DC field is applied parallel to the array axis and also at an angle of 

45°. A uniform RF field with a frequency 9.37 GHz was applied perpendicular to the sample plane and the 

absorption as a function of the applied field strength measured.  

It is expected that the inter-dot interaction will result in differences in the 0° and 45° spectra; 

however, previously we were not able to explain the physical nature of such differences – a problem we 

address in the present work by employing our lattice-based theory. We start by estimating which values of 

the wavevector k contribute to the absorption spectrum. Numerical calculations show that it is important to 

include the dipole-dipole fields due to other nanoparticles when the distance between them is less than 

about 20 micrometers. This implies that only modes with wavevectors greater than  k = 2π ⋅104 / 20  cm-1 

will be effectively distinguishable from those at k = 0 . On the other hand, such rapidly oscillating waves 

will not contribute appreciably to the absorption due to the fact that the applied RF field is uniform. As a 

result, we only need to consider the modes with k = 0  in this experiment.  

Since the values for the damping and saturation magnetization of a given sample can be somewhat 

different from those of other samples, we developed a procedure which allows us to slightly vary such 

parameters without performing unnecessarily repetitious calculations. We do this by using first-order 

perturbation theory.  As an example, we consider the linearized Landau-Lifshtiz equation and regard the 

damping to be a small perturbation: 

  

( )

( )
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 γ  ∆ω = − β ⋅ × × + ×    
∑

m m m m h m h

V m m h V V h
    (3.1) 

In fact, the first order effect of the damping is to linearly shift the imaginary part of ω  from 0 to some 

negative value, we can use some arbitrary but small initial value, say β = 0.01, and then simply linearly 

scale β  to obtain different absorption spectra. 



 In the same way we can relate the effect of a small shift in the saturation magnetization to a shift in 

the resonant frequency by using 

 
  
∆ω =

∆Ms
Ms

ViL ⋅ mi
(0) × hi

(1) Vj( )+ Vi × hidemag
(0)( )

i, j
∑       (3.2) 

where 
  
hidemag

(0) is a demagnetization field alone, i.e. the field produced by the magnetic nanoparticles. Such 

a shift is independent of the applied field, and therefore we only need to calculate the shift in the resonant 

frequencies once and then apply it to the whole spectrum, thereby obtaining a new absorption spectrum.  

This technique is of course valid only when one can, to first order, neglect the change of (0)
im ; i.e., the 

sample is nearly saturated due to the high external field. 

 Since material parameters do not depend on the direction of the applied field, we have used the 0° 

absorption data to fit the material parameters in the vicinity of traditional values for bulk permalloy 

( Ms = 795erg / cm,   β = 0.01), keeping in mind that in nanostructures the damping is typically greater13 

and the saturation magnetization is typically smaller than in bulk materials. We then compare the predicted 

spectrum with the 45° data and see if the results are reasonable. For analysis we choose a high-field region 

(larger than 1000 Oe) of the data, since here one can be certain that the samples are nearly uniformly 

magnetized. We discretize the system using individual cells of 5 × 5 × 85nm in size, with the exception of 

the isolated nanodot, where a relatively good convergence was obtained for a slightly coarser 

discretization, 7.5 × 7.5 × 85nm. The convergence was tested by calculating the absorption maxima for 

different cell sizes; as a criteria we required that decreasing the in-plane cell’s dimensions by a factor of 1.5 

shift the position of the maxima by no more than 2%. However, we were not able to do so with the 

sample’s thickness since using finer discretization in this direction would require an extremely significant 

increase of the number of cells in the system, severely increasing the computation time. As a result, we are 

forced to neglect the presence of surface modes and the bulk modes with non-uniform distribution along 

the thickness. The low-frequency surface modes are typically anti-symmetric, and therefore can not couple 

to the uniform r.f. field, the same is not true for the bulk modes.  In all cases we neglect microwave eddy 



currents; while it is not obvious that this can be done for such a thick sample, the comparison between the 

simulations and the rather than eddy currents. The fitted material parameters are sM 767erg / cm=  and 

0.03β = .  

The calculated absorption derivative along with the experimental data for the DC field applied at 0° 

(parallel to the array axis) and 45° are shown in figures 3 and 4 respectively. The difference between the 

predicted resonance field for an isolated dot (1530 Oe) and the experimental value (1265 Oe) is only 

partially due to the interdot field, which, when averaged across the sample, is approximately 533 Oe for the 

external DC field applied at 0°, and is approximately 510 Oe at 45°.  In both cases this average inter-dot 

field is parallel to the direction of the applied DC field. Figure 4 yields rather good agreement with 

experiment for the uniform mode using the same parameters as used for figure 3; unfortunately the strength 

of the experimentally observed signal is limited by a recorder cutoff. There are two distinct differences 

between these graphs: first, the shift of the uniform mode frequency with respect to that of a single dot, and 

second, additional high-field absorption peaks are present (three in figure 4, one in the case of a single dot, 

and none when the DC field is applied at 0°).  

 Both of these effects must be related to the spatial distribution of the field produced by nanoparticles in 

the array.  The static inter-dot field distribution (i.e. the field inside the dot due to the other dots), as 

represented by the spin orientation (which lies parallel to the local field), is shown in figure 5 for an 

external field of 1480 Oe; it changes relatively little with changes in the external field. The spatial 

distributions of the excited modes themselves are shown in figures 6 and 7.  

 When the external d.c. field is applied at 0°, the inter-dot interaction makes the fields near the 

perimeter more non-uniform than in the center (figure 5a)), while pushing the “uniform” mode to higher 

frequencies, and therefore lower fields (Fig. 6a) vs. Fig. 6b)); the basic set of modes remains virtually 

unchanged – a high field satellite peak that was observed at 2500 Oe in the isolated dot (Figure 7a)), is 

virtually the same as the one excited here, albeit at a much lower field of 1375 Oe (figure 7b)). However, 

when the external DC field is applied at 45°, the situation is somewhat different, as shown in figure 5b). 

The inter-dot field then creates three areas where the magnetization is almost uniform – one in the dot 



center and two in the corners, separated from each other by a non-uniform magnetization region. This not 

only affects the uniform mode (figure 6c)), but also leads to the creation of a number of localized “edge 

modes” that differ from each other by the number of nodes, and exist in the above-mentioned areas of 

nearly uniform magnetization (figures 7c) – 7e)).  

 The difference in the position of the experimental and numerical fields of the three high-field peaks 

(approximately 5% error) may arise from an observed, slightly non-circular shape of the dots14, where the 

latter results in observed deviations from a precise four-fold symmetry in our experiments. Since the high-

field peaks are edge mode resonances, they will be more strongly affected by edge imperfections compared 

to the uniform mode. Also one can see that in Fig. 1 experimental curve contains a broadening to the left of 

the main peak, which means the presence of extra absorbing modes in the system. From preliminary 

calculations we may conclude that this difference between our numerical analysis and the experiment is 

due to the fact that we neglected the presence of the modes with a variation along the thickness, which are 

responsible for the appearance of this “shoulder”. 

 

3. Conclusions. 

 In the present paper we have shown how the translational symmetry of periodic systems, resulting 

in the Bloch-Floquet form, can be applied to analyze the modes of lattices of magnetic nanodots. For 

modes with wavevector k = 0, this technique requires approximately the same number of calculations as 

that needed to analyze the properties of a single magnetic dot, and produces a reasonably good agreement 

with existing experimental data. The latter allows us to analyze the spectra of magnetic nanodots, including 

specific changes in the absorption spectra due to the presence of significant inter-dot interactions. 
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Figure Captions. 

Fig.1. Array of nanodots. 

Fig. 2. SEM image of a periodic are of perm alloy discs. 

Figure 3. The heavy line shows the experimental absorption derivative as a function of the external 

d.c. field.  The simulations for isolated dot and the dot array are shown by the dashed and 

continuous lines, respectively; the d.c. field is applied at 0° with respect to the array axis. 



                                                                                                                                                                              
Figure 4. Absorption derivative (heavy line) and the simulation (light line) as a function of the 

external d.c. field for the dot array (the saturation at the lower extreme is an instrumental effect); 

the d.c. field is applied at 45° with respect to the array axis. 

Figure 5. Local spin orientations arising from the external field and interdot fields (associated with 

other nanoparticles); a) external DC field is applied at 0°, and b) at 45 degrees.  

Figure 6.  Z-projections of uniform modes for a) an isolated dot (1530 Oe), b) an array with the 

external field at 0° (1265 Oe), and c) 45° (1170 Oe).  The magnitude of excitations is color coded. 

Figure 7.  Z-projections of low-frequency resonant modes (those responsible for high-field satellites). 

a) - an isolated dot (2500 Oe), b) - 0° (1375 Oe) and c) - e 45° (2097, 2345 and 2630 Oe) arrays. The 

magnitude of excitations is color coded. 
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