163 research outputs found

    The Galaxy Octopole Moment as a Probe of Weak Lensing Shear Fields

    Get PDF
    In this paper, we introduce the octopole moment of the light distribution in galaxies as a probe of the weak lensing shear field. While traditional ellipticity estimates of the local shear derived from the quadrupole moment are limited by the width of the intrinsic ellipticity distribution of background galaxies, the dispersion in the intrinsic octopole distribution is expected to be much smaller, implying that the signal from this higher order moment is ultimately limited by measurement noise, and not by intrinsic scatter. We present the computation of the octopole moment and show that current observations are at the regime where the octopole estimates will soon be able to contribute to the overall accuracy of the estimates of local shear fields. Therefore, the prospects for this estimator from future datasets like the Advanced Camera for Survey and the Next Generation Space Telescope are very promising.Comment: 9 pages, 2 PostScript figures; Submitted to Astrophysical Journa

    The alignment of disk and black hole spins in active galactic nuclei

    Full text link
    The inner parts of an accretion disk around a spinning black hole are forced to align with the spin of the hole by the Bardeen-Petterson effect. Assuming that any jet produced by such a system is aligned with the angular momentum of either the hole or the inner disk, this can, in principle provide a mechanism for producing steady jets in AGN whose direction is independent of the angular momentum of the accreted material. However, the torque which aligns the inner disk with the hole, also, by Newton's third law, tends to align the spin of the hole with the outer accretion disk. In this letter, we calculate this alignment timescale for a black hole powering an AGN, and show that it is relatively short. This timescale is typically much less than the derived ages for jets in radio loud AGN, and implies that the jet directions are not in general controlled by the spin of the black hole. We speculate that the jet directions are most likely controlled either by the angular momentum of the accreted material or by the gravitational potential of the host galaxy.Comment: 4 pages, LateX file, accepted for publication in ApJ Letter

    The Virial Mass Function of Nearby SDSS Galaxy Clusters

    Full text link
    We present a new determination of the cluster mass function and velocity dispersion function in a volume 107h3\sim10^7 h^3Mpc3^{-3} using the Fourth Data Release of the Sloan Digital Sky Survey (SDSS). We use the caustic technique to remove foreground and background galaxies. The cluster virial mass function agrees well with recent estimates from both X-ray observations and cluster richnesses. The mass function lies between those predicted by the First-Year and Three-Year WMAP data. We constrain the cosmological parameters Ωm\Omega_m and σ8\sigma_8 and find good agreement with WMAP and constraints from other techniques. With the CIRS mass function alone, we estimate Ωm=0.240.09+0.14\Omega_m=0.24^{+0.14}_{-0.09} and σ8=0.920.19+0.24\sigma_8=0.92^{+0.24}_{-0.19}, or σ8=0.84±\sigma_8=0.84\pm0.03 when holding Ωm=0.3\Omega_m=0.3 fixed. We also use the WMAP parameters as priors and constrain velocity segregation in clusters. Using the First and Third-Year results, we infer velocity segregation of σgxy/σDM0.94±\sigma_{gxy}/\sigma_{DM}\approx0.94\pm0.05 or 1.28±\pm0.06 respectively. We compare the velocity dispersion function of clusters to that of early-type galaxies and conclude that clusters comprise the high-velocity end of the velocity dispersion function of dark matter haloes. The evolution of cluster abundances provides constraints on dark energy models; the mass function presented here offers an important low redshift calibration benchmark.Comment: 22 pages, 11 figures, ApJ in press, revised figure

    Inhibition of vaccinia virus L1 N-myristoylation by the host N-myristoyltransferase inhibitor IMP-1088 generates non-infectious virions defective in cell entry

    Get PDF
    We have recently shown that the replication of rhinovirus, poliovirus and foot-and-mouth disease virus requires the co-translational N-myristoylation of viral proteins by human host cell N-myristoyltransferases (NMTs), and is inhibited by treatment with IMP-1088, an ultrapotent small molecule NMT inhibitor. Here, we examine the importance of N-myristoylation during vaccinia virus (VACV) infection in primate cells and demonstrate the anti-poxviral effects of IMP-1088. N-myristoylated proteins from VACV and the host were metabolically labelled with myristic acid alkyne during infection using quantitative chemical proteomics. We identified VACV proteins A16, G9 and L1 to be N-myristoylated. Treatment with NMT inhibitor IMP-1088 potently abrogated VACV infection, while VACV gene expression, DNA replication, morphogenesis and EV formation remained unaffected. Importantly, we observed that loss of N-myristoylation resulted in greatly reduced infectivity of assembled mature virus particles, characterized by significantly reduced host cell entry and a decline in membrane fusion activity of progeny virus. While the N-myristoylation of VACV entry proteins L1, A16 and G9 was inhibited by IMP-1088, mutational and genetic studies demonstrated that the N-myristoylation of L1 was the most critical for VACV entry. Given the significant genetic identity between VACV, monkeypox virus and variola virus L1 homologs, our data provides a basis for further investigating the role of N-myristoylation in poxviral infections as well as the potential of selective NMT inhibitors like IMP-1088 as broad-spectrum poxvirus inhibitors

    Efficient survey design for finding high-redshift galaxies with JWST

    Full text link
    Several large JWST blank field observing programs have not yet discovered the first galaxies expected to form at 15z2015 \leq z \leq 20. This has motivated the search for more effective survey strategies that will be able to effectively probe this redshift range. Here, we explore the use of gravitationally lensed cluster fields, that have historically been the most effective discovery tool with HST. In this paper, we analyze the effectiveness of the most massive galaxy clusters that provide the highest median magnification factor within a single JWST NIRCam module in uncovering this population. The results of exploiting these lensing clusters to break the z>15z > 15 barrier are compared against the results from large area, blank field surveys such as JADES and CEERS in order to determine the most effective survey strategy for JWST. We report that the fields containing massive foreground galaxy clusters specifically chosen to occupy the largest fraction of a single NIRCam module with high magnification factors in the source plane, whilst containing all multiple images in the image plane within a single module provide the highest probability of both probing the 15z2015 \leq z \leq 20 regime, as well as discovering the highest redshift galaxy possible with JWST. We also find that using multiple massive clusters in exchange for shallower survey depths is a more time efficient method of probing the z>15z > 15 regime.Comment: 12 pages, 5 figure

    Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4

    Get PDF
    The CCR5 co-receptor binds to the HIV-l gp120 envelope glycoprotein and facilitates HIV-l entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (α-helix) and 412d (extendedloop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-l interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system

    Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4

    Get PDF
    The CCR5 co-receptor binds to the HIV-l gp120 envelope glycoprotein and facilitates HIV-l entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (α-helix) and 412d (extendedloop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-l interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system
    corecore