18,095 research outputs found
Balancing Local Order and Long-Ranged Interactions in the Molecular Theory of Liquid Water
A molecular theory of liquid water is identified and studied on the basis of
computer simulation of the TIP3P model of liquid water. This theory would be
exact for models of liquid water in which the intermolecular interactions
vanish outside a finite spatial range, and therefore provides a precise
analysis tool for investigating the effects of longer-ranged intermolecular
interactions. We show how local order can be introduced through quasi-chemical
theory. Long-ranged interactions are characterized generally by a conditional
distribution of binding energies, and this formulation is interpreted as a
regularization of the primitive statistical thermodynamic problem. These
binding-energy distributions for liquid water are observed to be unimodal. The
gaussian approximation proposed is remarkably successful in predicting the
Gibbs free energy and the molar entropy of liquid water, as judged by
comparison with numerically exact results. The remaining discrepancies are
subtle quantitative problems that do have significant consequences for the
thermodynamic properties that distinguish water from many other liquids. The
basic subtlety of liquid water is found then in the competition of several
effects which must be quantitatively balanced for realistic results.Comment: 8 pages, 6 figure
Unconventional Quantum Critical Points
In this paper we review the theory of unconventional quantum critical points
that are beyond the Landau's paradigm. Three types of unconventional quantum
critical points will be discussed: (1). The transition between topological
order and semiclassical spin ordered phase; (2). The transition between
topological order and valence bond solid phase; (3). The direct second order
transition between different competing orders. We focus on the field theory and
universality class of these unconventional quantum critical points. Relation of
these quantum critical points with recent numerical simulations and experiments
on quantum frustrated magnets are also discussed.Comment: 28 pages, 6 figures. Review article for Int. J. Mod. Phys.
ACTS propagation terminal update
The activities at Virginia Polytechnic Institute and State University in preparation for the February 1993 launch of ACTS are summarized. ACTS propagation terminals (APT) are being constructed to receive the 20 and 27.5 GHz ACTS beacon signals. Total power radiometers operating at the same frequencies are integrated into the terminal for use in level setting. Recent progress and plans for APT's are reported
Novel polyimide compositions based on 4,4': Isophthaloyldiphthalic anaydride (IDPA)
A series of twelve high temperature, high performance polyimide compositions based on 4,4'-isophthaloyl diphthalic anhydride (IDPA) was prepared and characterized. Tough, film-forming, organic solvent-insoluble polyimides were obtained. Three materials were semicrystalline. Several gave excellent long-term thermooxidative stability by isothermal thermogravimetric analysis (ITGA) at 300 C and 350 C in air when compared to Kapton H film (duPont). One extensively studied material displayed different levels of semicrystallinity over a wide range of final cure time/temperatures. The polyimide from IDPA and 1,3-bis (4-aminophenoxy 4'-benzoyl) benzene exhibited multiple crystallization and melting behavior, implying the existence of two kinetic and two thermodynamic crystallization and melting transitions by differential scanning calorimetry (DSC)
Intercomparison of soil pore water extraction methods for stable isotope analysis
Funded by NSERC Discovery Grant U.S. Forest Service U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies OfficePeer reviewedPostprin
- …
