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Abstract 

Measurements of δ
2
H and δ

18
O composition of pore waters in saturated and unsaturated soil 

samples are routinely performed in hydrological studies. A variety of in-situ and lab-based 

pore water extraction methods for the analysis of the stable isotopes of water now exist. 

While some have been used for decades (e.g. cryogenic vacuum extraction) others are 

relatively new, such as direct vapor equilibration or the microwave extraction technique. 

Despite their broad range of application, a formal and comprehensive intercomparison of soil 

water extraction methods for stable isotope analysis is lacking and long overdue. Here we 

present an intercomparison among five commonly used lab-based pore water extraction 

techniques (high pressure mechanical squeezing, centrifugation, direct vapor equilibration, 

microwave extraction, and cryogenic extraction). We applied these extraction methods to two 

physicochemically different soil types that were dried and rewetted with water of known 

isotopic composition at three different water contents. Our results showed that the extraction 

approach can have a significant effect on pore water isotopic composition as all methods 

exhibited significant deviations from the spiked reference water, depending secondarily on 

the soil type and soil water content. Most pronounced, cryogenic water extraction showed 

large deviations from the spiked reference water, whereas mechanical squeezing and 

centrifugation provided results closest to the spiked water for both soil types. We also 

compared results for each extraction method – where liquid water was obtained – on both an 

OA-ICOS and IRMS. Differences between these two analytical instruments were negligible 

for these organic compound-free waters. We suggest that users of soil water extraction 

approaches carefully choose an extraction technique that is suitable for the specific research 

question, adapted to the dominant soil type and water content of the study. 
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1 INTRODUCTION 

Pore water extracted from soils for isotope analysis is now used extensively in hydrological 

process investigations. Such approaches are applied over a broad range of disciplines to 

characterize mixing processes in the soil (Gaj et al., 2016; Orlowski et al., 2015; Thomas et 

al., 2013), investigate water flow paths at the hillslope scale (Garvelmann et al., 2012; 

Mueller et al., 2014; Vogel et al., 2010; Windhorst et al., 2014), estimate transit times in soil 

profiles (Sprenger et al., 2015b; Stumpp et al., 2009; Timbe et al., 2014), partition 

evaporation and transpiration fluxes (Dubbert et al., 2014; Rothfuss et al., 2010; Wang et al., 

2012), study water resource competition of plants (Meißner et al., 2012; Williams and 

Ehleringer, 2000), and to derive community water-use patterns or zones of root activity in 

soils (Isaac and Anglaaere, 2013; Liu et al., 2011). The capability to extract isotopically 

unfractionated water from soils is fundamental to all these studies and is still not solved 

(Munksgaard et al., 2014; Orlowski et al., 2016). 

To analyze the isotopic composition of soil water, a water extraction method is required. 

Several extraction methods have been developed and can be categorized into laboratory- and 

field-based methods. Further, soil water isotopic composition can be determined via direct 

equilibration techniques. Laboratory methods include: azeotropic distillation (Revesz and 

Woods, 1990; Thorburn et al., 1993), microdistillation (Kendall and Coplen, 1985), 

mechanical squeezing (Böttcher et al., 1997; Wershaw et al., 1966; White et al., 1985), 

cryogenic vacuum extraction (Dalton, 1988; Goebel and Lascano, 2012; Orlowski et al., 

2013; Dawson and Ehleringer, 1993; West et al., 2006; Ehleringer et al., 2000), a modified 

vacuum extraction technique (Koeniger et al., 2011), centrifugation with or without 

immiscible heavy liquids (Mubarak and Olsen, 1976; Batley and Giles, 1979; Barrow and 



 

 

This article is protected by copyright. All rights reserved. 

Whelan, 1980; Peters and Yakir, 2008), Picarro’s Induction Module (Picarro, 2015), 

microwave extraction (Munksgaard et al., 2014), or the accelerated solvent extraction 

technique (Zhu et al., 2014). Field-based methods include: wick samplers (e.g. Landon et al., 

1999; Windhorst et al., 2014), suction cups (e.g. Figueroa-Johnson et al., 2007; Landon et al., 

2000; Weihermüller et al., 2005), and zero-tension lysimeters (e.g. O’Driscoll et al., 2005; 

Wenner et al., 1991). Equilibrium techniques include: direct liquid-water-vapor equilibrium 

(e.g. Wassenaar et al., 2008; Hendry et al., 2015), in situ equilibration (Gaj et al., 2016; 

Garvelmann et al., 2012; Rothfuss et al., 2013, 2015; Volkmann and Weiler, 2014), He-

purging (Ignatev et al., 2013), and CO2- and H2-equilibration (Hsieh et al., 1998; Jusserand, 

1980; Kelln et al., 2001; Koehler et al., 2000; McConville et al., 1999; Scrimgeour, 1995). 

For a detailed methodological review on the different soil water extraction methods, the 

reader is referred to Sprenger et al. (2015a). 

Although, the sheer number and variety of soil water extraction methods and their related 

publications have increased dramatically in recent years, little work has been done to 

compare the isotopic effects of different extraction procedures on the recovered soil water. 

Preliminary work that has compared some of these soil water extraction techniques has 

suggested differences between the various approaches (Figueroa-Johnson et al., 2007; 

Jusserand, 1980; Kelln et al., 2001; Munksgaard et al., 2014; Sprenger et al., 2015a; Walker 

et al., 1994). Kelln et al. (2001) compared mechanical squeezing, centrifugation, azeotropic 

distillation, and a direct soil water equilibrium technique developed by Koehler et al. (2000). 

They showed large discrepancies between the isotopic results extracted from clay-rich soils. 

Similar findings were obtained by Jusserand (1980) where δ
18

O values of spiked reference 

water differed from the extracted values obtained through mechanical squeezing, cryogenic 
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extraction, centrifugation, and a direct equilibration method. Figueroa-Johnson et al. (2007) 

compared centrifugation and azeotropic distillation against suction lysimeters. They found 

lower isotope ratios for water collected from a sandy soil by centrifugation and azeotropic 

distillation than when sampled via suction lysimeters. Moreover, observed discrepancies were 

attributed to differences in grain size distribution – in sandy soils the differences between the 

methods were small but became large in clayey soils (Figueroa-Johnson et al., 2007). When 

comparing the microwave extraction method against cryogenic extraction, Munksgaard et al. 

(2014) observed discrepancies between the two approaches which they attributed to 

incomplete cryogenic extraction. Their cryogenically extracted soil water data plotted 

unusually to the left of the Local Meteoric Water Line (LMWL), which suggested that 

absorbed water in the clay-rich soil was not fully extracted by the conventional conductive 

heating mode employed in the cryogenic extraction technique (Munksgaard et al., 2014; 

Orlowski et al., 2013). So far, it is assumed that the added water during spiking experiments 

becomes partly bound to soil minerals (clay hydroxyls) but is afterwards not or only partly 

released again during the various extraction approaches (Sprenger et al., 2015a). 

Despite the work to date and the extensive application of stable water isotope analysis, no 

formal intercomparison of the techniques for soil water extraction and their impact on 

resulting soil water isotopic composition has been performed. This is a major issue in our 

field, as noted recently by McDonnell (2014) and Sprenger et al. (2015a). Studies are needed 

that explicitly explore effects of extraction techniques for mobile and immobile soil waters on 

the water isotope composition, especially in the ecohydrological context (McDonnell, 2014). 

Thus, estimates of plant water uptake depths, use of a soil water end member in hydrograph 

separation, or mean residence time analysis should be critically studied in light of the 
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different mobilities of water in e.g. different soil types and pore spaces (Orlowski et al., 

2016). The choice of sampling methods is therefore crucial for the interpretation of soil pore 

water stable isotope data, but a systematic comparison between the different methods was 

still missing (McDonnell, 2014; Sprenger et al., 2015a). Here we provide a first formal 

intercomparison of the five major lab-based techniques used for soil water extractions: 

Cryogenic vacuum extraction, centrifugation, mechanical squeezing, direct vapor equilibrium 

method, and microwave extraction. We pose the null hypothesis that each extraction 

technique will yield the same soil water isotopic composition. We conducted the water 

extractions with two physicochemically different standard soils (silty sand and clayey loam), 

at different gravimetric water contents (8, 20, and 30%) spiked with a known isotopic label. 

2 MATERIALS AND METHODS 

2.1 Experimental design 

For each of the five extraction methods two physicochemically different soil types (LUFA 

2.4 (clayey loam) and LUFA 2.1 (silty sand)) from the German State Research Institute for 

Agriculture (LUFA Speyer, 2015) (Table I) were sieved (2 mm), oven-dried (72 h, 120°C), 

rehydrated with distilled water of known isotopic composition (δ
2
H: −59.8±1.4‰, δ

18
O: 

−8.6±0.3‰; N=21) to gravimetric water contents of 8, 20, and 30% (5 replicates per method 

and water content). Soils in tubes (for cryogenic extraction, centrifugation, and microwaving) 

were homogenized by a Vortex Genie (Scientific Industries Inc., New York, USA) and those 

in bags (for mechanical squeezing and direct vapor equilibration) were homogenized by 

hand. All samples were stored at 4°C for three days for equilibration of the solid and liquid 

phase prior to water extractions. Extraction/equilibration method specific preparations are for 
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each method fully described in the following sub-sections including the extraction protocols. 

Pre- and post-water extraction soil sample weights as well as sample weights after an 

additional oven-drying (24 h, 120°C) were compared to determine soil water extraction 

efficiency. For isotope analysis, all extracted (liquid) water samples were filtered on 0.45 µm 

disk filters, transferred to 2 mL amber glass vials covered by solid silicone septa, and tightly 

sealed with Parafilm®. 

 

[Table I near here] 

 

2.2 Soil water extraction techniques and extraction parameters 

2.2.1 Cryogenic vacuum extraction 

For cryogenic vacuum extraction, the sample material was heated (>90°C) under vacuum. 

Thereby, water evaporated from the soil material and was subsequently caught in a 

(cryogenic) liquid nitrogen cold trap (Ingraham and Shadel, 1992). After defrosting, the 

liquid water sample was accessible for isotope analysis. We used two different cryogenic 

distillation systems in this study; both were extendable multi-port systems providing the 

possibility to extract a larger number of samples per day, simultaneously (Orlowski et al., 

2013). The system developed at the Institute for Landscape Ecology and Resources 

Management (ILR, Giessen, DE) was a mobile setup which consisted of a vacuum manifold 

with six independent extraction lines, each comprising three extraction-collection units, 

resulting in 18 extraction slots (referred to as DE system). A detailed description and 

validation of this system was given in Orlowski et al. (2013). The other setup at the Global 



 

 

This article is protected by copyright. All rights reserved. 

Institute for Water Security (GIWS, Saskatoon, CA; referred to as CA system) was very 

similar to the apparatus at the ILR and comprised six independent extraction lines with four 

extraction-collection units. 24 samples could be extracted in parallel (Orlowski et al., 2013, 

2016). 

For cryogenic water extraction using the DE extraction line, 20 g of each soil sample was 

placed directly into glass extraction vials. Using the CA system, 25 g were put into glass 

scintillation vials. Vials were hermetically-sealed and tops wrapped with Parafilm®. After 

equilibration, clayey loam samples were extracted for 240 min and silty sand soils for 45 min 

at a temperature of 98°C and a baseline pressure of 2.2 Pa and 0.1 Pa at the CA and DE line, 

respectively. 

2.2.2 Centrifugation 

For the centrifugation method, 40 g of soil samples were prepared in 50 mL centrifuge tubes. 

Tubes were capped and tightly sealed with Parafilm® (homogenization and storage as 

described above). An additional set of two centrifugation tubes (15 mL) per water content 

and soil type were prepared similar to di Bonito et al. (2008) with Whatman® Grade 1 filter 

paper placed over the exit hole; soil was then transferred into the prepared tubes, capped, and 

placed inside a clean 50 mL centrifuge tube. The compilation of smaller centrifuge tubes 

equipped with filter paper placed in larger tubes are hereafter referred to as filter tubes 

(Figure 3). All soil samples were spun at 5000 rpm for 15 minutes on an Eppendorf 

centrifuge model 5804 (Eppendorf Corp., Hamburg, DE). Initial tests showed that 

centrifugation times of <30 min were sufficient, after which no more water could be extracted 

at a particular speed. Relative centrifugal force was converted to soil water tensions using 
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transformations based on simple soil physics (Edmunds and Bath, 1976; Figueroa-Johnson et 

al., 2007). A calculated tension of approximately 30 kPa was applied to all soil samples. 

2.2.3 Mechanical squeezing 

For mechanical squeezing, 400 g of soil was added to a Ziploc® bag with subsequent 

reference water addition. Bags were sealed after squeezing out excess air, and massaged for 

homogenization. The samples were subsequently placed in a second Ziploc® bag and 

equilibrated as described above. The high pressure mechanical squeezers used for this study 

were constructed similar to Böttcher et al. (1997) and consisted of a stainless steel chamber 

with a porous stainless steel filter disk at the exit port and a brass piston applying 

compression to the top of the sample. Soil samples were transferred from the Ziploc® bag 

into the squeezer chamber, a syringe was attached to the exit port, and piston placed at the 

top. Pressure was applied via a hydraulic jack to a maximum of 10000 psi (68.95 MPa) and 

held at that pressure for 24 hours. Water was expelled from the soil through a stainless steel 

sintered filter at the bottom of the stainless steel squeezing cylinder directly into a syringe. 

Special precautions were taken to ensure that neither the soil sample, nor the expelled water 

came into contact with the atmosphere during this process. 

2.2.4 Direct vapor equilibration method 

Soil samples were prepared similarly to the samples for mechanical squeezing: 400 g of soil 

were added to a Ziploc® bag, with subsequent amounts of reference water. Ziploc® bags 

were evacuated, sealed and massaged to homogenize, placed inside a second Ziploc® bag, 

and stored to equilibrate prior to analysis. We followed protocols of Hendry et al. (2015) and 

Wassenaar et al. (2008), whereby the Ziploc® bags containing the soil samples were inflated 
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with dry air, sealed, and allowed to equilibrate at room temperature for additional three days 

prior to water vapor isotope analysis. 

2.2.5 Microwave extraction 

For microwave extraction, 25 g of each soil sample was prepared directly into glass 

scintillation vials. Vials were capped and tops wrapped with Parafilm®. After equilibration as 

described above, the sample material was transferred to the extraction vessel in the 

microwave and evenly distributed across the base of the container. The microwave extraction 

setup was constructed following Munksgaard et al. (2014). A domestic microwave was 

coupled with an IWA-45EP Analyzer (Los Gatos Research Inc., Mountain View, US). 

Through microwave irradiation within a sealed vessel including the soil sample, water was 

extracted into a dry air stream. The evolving water vapor was directed into a cooled 

condensation chamber, which controls the water vapor concentration and flow rate to the 

analyzer. Microwave power was set to 300 W for 15 min analogous to Munksgaard et al. 

(2014). For drift corrections and calibrations, in-house liquid water standards were run after 

every fourth sample. A piece of filter paper (Whatman® 541) was placed inside the 

extraction container and 0.3 ml of water standard was added to the filter paper. The filter 

paper caused water to be distributed across a large surface area as per Munksgaard et al. 

(2014). The same water extraction procedure was performed for the water standards as for the 

soil samples. δ
18

O and δ
2
H values were derived after machine specific humidity corrections 

were applied to each sample data-set following the protocols outlined by Schmidt et al. 

(2010) for the specific isotopic analyzer used for this study. 
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2.3 Isotope analyses 

For cross-checking the isotope results and ruling out potential analytical differences, the 

isotopic composition of all water samples were analyzed via both Off-Axis Integrated Cavity 

Output Spectroscopy (OA-ICOS) and isotope-ratio mass spectrometry (IRMS) if a sufficient 

amount of water could be extracted. Samples for IRMS were run on a Delta V™ Advantage 

mass spectrometer (Thermo Fisher Scientific, Waltham, MA, US) and an H/Device 

peripheral using a Cr-reduction method for 
2
H analysis. For 

18
O analysis, a GasBench II 

peripheral was utilized. In-house standards, established by runs with VSMOW2 and SLAP2, 

were run as samples to allow the results to properly be reported against VSMOW (see 

Nelson, (2000)). Results are accurate to ±1‰ for δ
2
H and to ±0.2‰ for δ

18
O, respectively. 

Liquid water samples for OA-ICOS were analyzed on an IWA-45EP Analyzer (Los Gatos 

Research Inc., Mountain View, US). Accuracy of OA-ICOS analyses was ±0.5‰ for δ
2
H and 

±0.1‰ for δ
18

O. The IWA-45EP Analyzer was likewise used for water vapor measurements 

of the direct vapor equilibration method and the microwave extraction. For these 

measurements, results are accurate to ±0.2‰ for δ
2
H and to ±0.05‰ for δ

18
O for a 100 sec 

reading period, respectively. All isotopic ratios are reported in per mil (‰) relative to Vienna 

Standard Mean Ocean Water (VSMOW) (Craig, 1961). Isotopic data of soil water extracts 

were checked for spectral interferences using the Spectral Contamination Identifier (LWIA-

SCI) post-processing software (Los Gatos Research Inc.) when measured via OA-ICOS. No 

sample was found to be contaminated with organics such as potentially co-extracted 

methanol, ethanol, acids, glycols, and other species. However, these co-distillates typically 

occur in plant water extracts (Leen et al., 2012). 



 

 

This article is protected by copyright. All rights reserved. 

2.4 Statistical evaluation 

For statistical analyses, we used IBM SPSS Statistics (Version 22, SPSS Inc., Chicago, IL, 

US). For quantifying any methods differences, effects of soil type and water content, the 

obtained isotope data were tested for normal distribution. Subsequently, Multivariate 

Analyses of Variances (MANOVAs) were applied and either Dunnett-T3 or Tukey-B tests 

were run to determine which groups were significantly different (p ≤ 0.05). 

To evaluate the performance or proficiency of each extraction method, a target standard 

deviation (SD) was set to 2‰ for δ
2
H and 0.2‰ for δ

18
O for liquid water and vapor samples 

measured via OA-ICOS and IRMS. The target SD was selected based on similar studies 

(Wassenaar et al. 2012) and a combination of standard errors. 

We determined Z-scores for each method using the assigned target SD. Z-scores show how 

far the extracted water isotopic ratios differed from the reference water used for spiking. The 

Z-scores were calculated for each sample and isotope according to Wassenaar et al. (2012): 

 

  
     

 
      (1) 

 

where, E was the extracted δ
2
H or δ

18
O value, respectively, R was the δ

2
H or δ

18
O value of 

the reference water, and μ was the target SD. A Z-score of <|2| was considered acceptable, 

values from |2–5| were considered questionable and >|5| was considered unacceptable. In 

contrast to Wassenaar et al. (2012), we extended the questionable and unacceptable range of 

Z-scores from previously |2–3| to now |2–5| and the unacceptable range from >|3| to now >|5| 

due to the culminating addition of standard error associated with the following SD’s: labelled 
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water, in-house standards, and machine precision that all may have an additional effect on the 

obtained isotope results. The assessment of Z-score analysis should help to identify in which 

ways extraction/equilibration method results are intercomparable and trustworthy. 

3 RESULTS 

Table II summarizes descriptive statistics of extracted isotopic ratios for silty sand and clayey 

loam obtained via the different soil water extraction methods and measured via OA-ICOS 

and IRMS. The range of standard deviations among methods showed that for δ
18

O, squeezing 

and centrifugation for both soil types were consistently the most repeatable. In general, 

microwave extraction and the direct vapor equilibration showed the highest standard 

deviations over all water contents and soil types. Cryogenic extraction consistently showed 

intermediate variability compared to the other techniques. For the cryogenic extraction 

method, in particular for the CA line, the precision of the water to water extraction – run as a 

quality control standard during each extraction – was greater than the soil water extraction 

(±0.8‰ and ±0.2‰ for δ
2
H and δ

18
O, respectively). Overall, high pressure mechanical 

squeezing provided the most consistent value closest to the labelled water for both δ
2
H and 

δ
18

O over both soil types and water contents (−62.4‰ to −56.9‰ for δ
2
H and −8.89‰ to 

−8.21‰ for δ
18

O). The most inconsistent was microwave extraction. Discrepancies may be 

further explained by soil chemistry, extraction technique, and methodologies. 

 

[Table II near here] 
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3.1 Water content and soil type effects 

3.1.1 OA-ICOS measurements 

At 8% WC, both cryogenic extractions (CA and DE) were significantly different from all 

other methods for both δ
2
H and δ

18
O and for both clayey loam and silty sand material (with 

one exception for δ
18

O clayey loam results of microwaving) measured via OA-ICOS (Figure 

1a). Both cryogenic extraction lines showed similar results and did not vary significantly 

between each other except for one instance for δ
18

O in the clayey loam soil at 8% WC. At 

20% and 30% WC, both of the cryogenic lines (CA and DE) produced similar results against 

each other that were not statistically different. However, cryogenic extraction was 

inconsistently different from the other methods for 20 and 30% WC and also different 

depending on the isotope and the lab (CA or DE). 

 

[Figure 1 near here] 

 

When comparing purely mechanical methods that do not involve phase changes prior to 

measurement (squeezing and centrifugation), results were statistically comparable and not 

significantly different for any water contents tested for both soil types and for both isotopes. 

The direct vapor equilibration method produced inconsistent results when comparing across 

water contents and soil types. At 8% WC, the method showed numerous statistically 

significant differences from all other tested methods. However, as water content increased, it 

shifted to only being different for clayey loam for all extraction methods and microwave 

extraction (for both soil types).  
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In general, higher water contents showed less significant differences among the different 

extraction approaches. This was especially true for the silty sand. 

3.1.2 IRMS measurements 

For 8% WC, some extractions did not provide enough water for both IRMS and OA-ICOS 

analysis and other methods were only applicable using OA-ICOS such as the direct vapor 

equilibration or the microwave extraction method. Nevertheless, again centrifugation and 

squeezing showed no statistically significant differences for both isotopes and soil types at 

8% WC but both differed from cryogenic extractions (except for cryogenic extractions vs. 

centrifugation for δ
2
H values of the clayey loam) (Figure 1b). 

When comparing the 20% WC isotope values (δ
2
H and δ

18
O) of the different extraction 

methods, almost all samples showed significant differences among each other for both 

isotopes. Even between centrifuged and squeezed samples, statistically significant differences 

were observed for the clayey loam for both δ
2
H and δ

18
O. However, no significant 

differences were observed for the sandy soil when using squeezing or centrifugation at 

20% WC. In comparison to the 20% WC, the 30% WC samples again showed less significant 

differences among the extraction methods (Figure 1b, lower graph). 

3.2 Assessment of proficiencies by Z-score analyses 

Figure 2 shows a graphical Z-score representation of the proficiency level for each extraction 

method measured via OA-ICOS. A Z-score of <|2| for both isotopes, indicated they fell 

within the pre-defined acceptable standard deviations from the consensus assigned values, 

while a score of |2-5| indicated questionable results. For all tested extraction methods at 

8% WC, the clayey loam Z-score results plotted farthest from the origin and were 
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inconsistent in spread when comparing among methods. However, squeezing and 

centrifugation of clay soils at 8% WC both plotted in the top right quadrant as these two 

methods were not significantly different and showed similar deviations from the origin. In the 

positive δ
2
H direction, squeezing, centrifugation, and direct vapor equilibration trended 

towards larger Z-scores with decreasing water content, with the clayey loam soil 

demonstrating the most positive Z-scores. Vapor equilibration was more or less consistent for 

δ
2
H, but showed a positive drift in δ

18
O direction with Z-scores up to 11. Decreasing water 

contents caused the greatest drift for the clayey loam. Microwave extraction exhibited a wide 

spread in Z-scores, especially in δ
2
H direction. Again, the 8% WC of the clayey loam 

demonstrated unacceptable results. Generally, this method showed the worst proficiency 

among all tested methods since all results fell in an unacceptable range (with one exception). 

At lower water contents, the vapor equilibration method showed higher Z-scores for the 

clayey loam soil than for the silty sand, with all values falling in an unacceptable range. 

However, most of the silty sand results still plotted in a questionable range for the vapor 

equilibration technique. Cryogenic extraction showed the opposite effect, of more negative 

δ
2
H Z-score values with decreasing water content. On the δ

18
O axis, cryogenic extraction, 

centrifugation, squeezing, and vapor equilibration all trend towards a negative Z-score, with 

cryogenic extraction showing the most negative Z-scores. On average, the proficiency across 

all methods was much better for the silty sand, than for the clayey loam soil type. In most 

cases, excluding microwave extraction, there were acceptable Z-score results for silty sand, 

particularly at water contents above 8%; similar trends are shown for clayey loam soil with 

increasing water content plotting closer to the origin, yet at an unacceptable range. Squeezing 

appeared to be a satisfactory method for both soil types at all water contents for silty sand and 
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above 8% WC for clayey loam. From a pure Z-score perspective, squeezing and 

centrifugation provided the best values with respect to the original reference water value for 

both soil types, with vapor equilibration coming in at a close third for silty sand. 

 

[Figure 2 near here] 

 

3.3 Differences between IRMS- and OA-ICOS-based assays 

The dual isotope plots presented in Figure 3 (A: silty sand, B: clayey loam) illustrate the 

variability in dual isotope space of each method and water content with respect to the labelled 

reference water added to each soil type. Each plot consists of results from the OA-ICOS 

(main plot) and IRMS analysis (upper left corner of main plot). 

For the silty sand soil type (Figure 3A), differences between methods and water contents 

were obvious, with microwave extraction showing strong enrichment and cryogenic 

extraction showing significant depletion for both isotopes. Interestingly, both of those 

methods were capable of completely extracting all of the soil pore water but due to their 

mode of operation, create vastly opposite effects on the measured isotopic ratio. Methods that 

were generally consistent or close to the reference water for both isotopes included squeezing 

and centrifugation with both extraction methods showing slight depletion with respect to δ
2
H, 

with squeezing at 8% WC performing the worst between them. Comparing results from 

IRMS to OA-ICOS showed very slight differences between measured isotopic values. For 

silty sand, differences between values (IRMS vs. OA-ICOS) over all methods tested range 

from 0–0.6‰ for δ
18

O, and 0.1–1.3‰ for δ
2
H. Generally, for the mechanical methods 
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(squeezing and centrifugation), the IRMS results were slightly lower than the OA-ICOS 

results. The high correlation of data provided for each method between both instruments 

demonstrates that the less expensive, rapid option of the OA-ICOS is a viable alternative for 

routine, accurate isotope analyses for waters with low concentrations of organic compounds. 

 

[Figure 3 near here] 

 

For the clayey loam soil type (Figure 3B), differences between methods and water contents 

follow the same patterns as the silty sand soil type but are larger. Similarly to the silty sand, 

cryogenic extraction shows significant depletion for both isotopes with the most depletion 

occurring for δ
2
H at the lowest water content. For clayey loam, differences between values 

(IRMS vs. OA-ICOS) over all methods tested ranged from 0.1–1.0 ‰ for δ
18

O, and 0–1.5 ‰ 

for δ
2
H, still within a good range to utilize OA-ICOS for routine analysis for all methods at 

applicable water contents. 

4 DISCUSSION 

4.1 Extraction methods and their effects on δ
18

O and δ
2
H 

Out of the five methods compared, mechanical squeezing and centrifugation showed the 

highest proficiency for both soil types and individual isotopes of δ
2
H and δ

18
O. Interesting 

differences were observed between many of the methods with respect to individual isotope 

shifts compared to the label water. It is possible that the mechanics of each method, or the 

phase changes that the water molecule went through as part of the specific extraction process 

prior to analysis, may have affected the resulting isotopic ratio. For example, when 
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comparing the two mechanically based methods of extracting water (squeezing and 

centrifugation), the effects on δ
2
H were opposite, with squeezing showing depletion and 

centrifugation showing enrichment (but with similar results for δ
18

O). We expected both 

methods to provide consistent results, but differences were apparent, especially for the clayey 

loam soil. 

The three methods that underwent significant phase changes (microwave, direct vapor 

equilibration, and cryogenic extraction) exhibited the largest isotopic discrepancies compared 

to the labeled water. Cryogenic extraction became more depleted in δ
18

O and δ
2
H; microwave 

more enriched in δ
2
H with mixed results for δ

18
O depending on soil type; direct vapor 

equilibration (at least for silty sand) more accurate for both isotopes but with enrichment in 

δ
18

O for the clayey loam soil. Others have shown recently that cryogenic extraction can show 

depleted δ
18

O values for incomplete extractions (Munksgaard et al., 2014; Sprenger et al., 

2015a). Notwithstanding, our study had complete extractions as measured by the water 

content results (not applicable to microwaving and direct vapor equilibration) but still showed 

depletion in δ
18

O. For direct vapor equilibration, deviations from the input label was observed 

in relation to water content, generally affecting δ
18

O more than δ
2
H since δ

2
H is less sensitive 

to fractionation effects (Garvelmann et al., 2012; Sprenger et al., 2015a). Microwave 

extraction showed the greatest effect on δ
2
H values regardless of soil type. Many of the 

methods showed that δ
2
H is indeed less sensitive to fractionation effects compared to δ

18
O, 

but the opposing effect on δ
18

O raises new questions suggesting that individual soil types 

play a greater role in isotope fractionation than originally thought. Isotopic fractionation 

effects especially affecting the δ
18

O values could be due to the formation of hydration spheres 

around cations (Sofer and Gat, 1972). Meißner et al. (2014) also found that the presence of 
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carbonates significantly altered the δ
18

O values of added water, whereas the shift in δ
2
H 

values between added and extracted water was independent from the carbonate content (see 

section 4.3). 

4.2 Measurement error and uncertainty 

In addition to the methods comparison, precision associated with analytical and laboratory 

equipment must be assessed. This will compound any differences across different method 

types. The associated uncertainty of the labelled water, the in-house standard used to define 

the OA-ICOS results, and the standard error associated with the OA-ICOS measurement, the 

minimum standard deviation for this study was approximately 3‰ for δ
2
H and 0.6‰ for 

δ
18

O. This does not take into account any errors associated with weighing soils, volumetric 

water additions to the sample, or any standard deviations related to each particular method. 

Others have likewise examined such measurement uncertainties. Koeniger et al. (2011) 

performed cryogenic extraction on spiked replicates of both sand and clayey soils and found 

significant differences for each soil type, with clayey soils having nearly 2‰ more deviation 

than sand for δ
2
H and 0.23‰ more for clay of δ

18
O. Wassenaar et al. (2008) reported 

repeatability in clay soils spiked with water of 0.7‰ for δ
2
H and 0.02‰ for δ

18
O using the 

direct vapor equilibration method, but generally precision decreased to 2.1‰ for δ
2
H and 

0.4‰ for δ
18

O for this technique (Hendry et al., 2015). We also noted instrument precision as 

well as reference labelled differences used to rewet the soil. Water-to-water cryogenic 

extraction was performed in both labs (CA and DE) to determine the precision of each system 

prior to application to soils. The CA lab showed precision of ±0.41‰ for δ
2
H and ±0.12‰ 

for δ
18

O (n=119), while the DE system was fully tested in regard to this by Orlowski et al. 
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(2013) using different types of water. For instance, extractions with local tap water resulted in 

no significant differences between the untreated (−56.74‰±0.36 for δ
2
H and −9.28‰±0.11 

for δ
18

O) and extracted tap water (−57.49‰±0.58 for δ
2
H and −9.40‰±0.12 for δ

18
O). 

Munksgaard et al. (2014) reported precision during microwave extraction of better than 2‰ 

for δ
2
H and 0.3‰ for δ

18
O for a sandy soil. 

4.3 Soil type and treatment effects on isotopic signature 

It is common practice to use oven-dried soils and rewetting to perform laboratory based 

experiments for methodology standardization (Koeniger et al., 2011; Oerter et al., 2014; 

Orlowski et al., 2013; Savin and Epstein, 1970; Sprenger et al., 2015a; VanDeVelde and 

Bowen, 2013; Volkmann and Weiler, 2014). This common practice is based on the premise 

that all water in the soil is evaporated by oven-drying and only the water added afterwards for 

recovery experiments will be measured. However, what is typically neglected for clay soils in 

particular is the interlayer and adsorbed water that may also be changed, left behind or 

completely removed during this process. Early on, Savin and Epstein (1970), and later 

VanDeVelde and Bowen (2013) have demonstrated that the removal of interlayer and 

adsorbed water on clay soils can occur when they were heated at 100 to 300°C under 

vacuum. Savin and Epstein (1970) also observed atmospheric vapor isotopic exchange with 

interlayer water (almost completely) within hours. They demonstrated that the isotopic 

composition of clay interlayer and adsorbed water can reflect the isotopic composition of 

atmospheric water vapor at the storage location; however, once the soil had been heated 

under vacuum and the interlayer water was removed, the water that remained showed no 

isotopic exchange. Recently, Sprenger et al. (2015a) questioned the common practice of 

spiking experiments with dry soils and suggested using field wet soils for comparison studies 
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instead; however, the true isotopic signature would be unknown for field soil samples. In our 

study, soil samples were oven-dried using standard methods at least twice prior to any 

rewetting and stored in a desiccation chamber until use. We also used higher drying 

temperatures and longer durations (72 h, 120°C) than usually applied in other studies (e.g. 

Koeniger et al., 2011; Meißner et al., 2014; West et al., 2006). However, drying for this study 

was not done under vacuum, so it can be assumed that not all of the clay interlayer and 

adsorbed water was removed or made non-isotopically exchangeable, which could explain 

some of the discrepancies throughout many of the methods tested, especially at low water 

contents. For the low water contents used in this study, the amount of available water fraction 

was small and exchange with interlayer and adsorbed water would be high. In hindsight, 

repeating this with soils dried under vacuum and higher temperatures may help identify this 

phenomenon. A co-extraction of organic compounds such as methanol, ethanol, acids, 

glycols, and others as observed by Leen et al. (2012) and West et al. (2010) leading to sample 

contamination can be neglected for both soil types in our study since no significant 

differences between OA-ICOS and IRMS results were observed, which could have indicated 

such organic contamination effects. Moreover, the LWIA-SCI software did not detect any 

contaminated samples which would have occurred when organics were co-extracted. As 

tested by West et al. (2011), the manufacturers' software appropriately identifies problematic 

samples; however, it does not resolve the underlying problem of contamination affecting 

laser-absorption based measurements. 

Another issue affecting extracted isotope results can be the presence of organic matter 

(organic carbon content) in soil samples. An intercomparison water recovery experiment by 

Walker et al. (1994) had difficulties getting back the added reference water from dry and wet 
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clays, sand, and gypseous sand. The authors assumed that decomposition of organic matter or 

extraction of crystallization water could have biased isotope effects. Recently, Orlowski et al. 

(2016) observed that δ
2
H values decreased with increasing organic carbon content when 

using cryogenic extraction. Thus, research is urgently needed to analyze the full extent of soil 

organic matter i.e. exchangeable bonded hydrogen (Meißner et al., 2014) in organic-rich soils 

on the extracted isotopic composition (Orlowski et al., 2016). The different existing 

exchangeable (labile) hydrogen fractions in environmental organic matter (O-, N-, and S-

bonded or aromatic hydrogen) can easily interact with ambient water or water vapor 

(Ruppenthal et al., 2010) and thus are assumed to cause isotope effects. However, the effect 

of organic carbon content on isotope results obtained via extraction/equilibrium methods 

other than cryogenic extraction is still not known. 

Further isotopic fractionation effects due to chemical reactions or high salt concentrations as 

observed by Oerter et al. (2014) may also explain some of the discrepancies between methods 

at specific water contents. Oerter et al. (2014) showed that isotope effects due to soil type are 

more common in soils with higher cation exchange capacity at low water contents. This can 

be further exacerbated by the cations present in the soil. Those soils with high ionic potential 

(e.g. Ca
2+

 and Mg
2+

) can create large amounts of structured water around the ion (hydrated 

radii) compared to the bulk water in the system. O’Neil and Truesdell (1991) theorized that 

from an oxygen isotope perspective, such cations are capable to cause fractionation between 

bound and bulk soil water. Moreover, soils higher in potassium ions may have a greater effect 

on hydrogen isotopes, while sodium soils demonstrate non-fractionating effects (Oerter et al., 

2014). These cation fractionation effects for montmorillonitic soils in particular can result in 

depletion of up to 1.55‰ in dry soils and 0.49‰ for δ
18

O for wet soils. Others likewise 
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observed that the isotopic fractionation effect due to hydration is more pronounced when only 

little water is added (e.g. Ingraham and Shadel, 1992; Meißner et al., 2014; Walker et al., 

1994). In soils with high water contents, the volume of water affected by hydration is small in 

comparison to the extracted water (Sprenger et al., 2015a). This is why hydration has no 

measurable effect on the isotope analysis (Sprenger et al., 2015a). 

In our study, chemical and salt effects can be ignored for the silty sand due to a low cation 

exchange capacity of 4.1 meq 100g
-1

, whereas the high cation exchange capacity 

(30.6 meq 100g
-1

) of the clayey loam soil may have caused some of the detrimental effects 

seen across the methods, especially at low water contents due to ion hydration effects among 

the cations present. 

4.4 How to choose which method to use? 

Ultimately, the goal of each individual study will dictate which methods are suitable for the 

particular results, sample types, timeline, cost, and needed precision. For example, if one is 

interested in delineating process-affected water from a mine in a reclamation landscape, as 

compared to precipitation or shale pore water in the same landscape, all of these techniques 

would in essence, provide a clear picture. For these kinds of studies, compromises in 

accuracy are acceptable since isotopic variations among these types of waters are generally 

higher and can still be distinguished. 

However, when factoring costs and time involved in analysis are important factors in a 

particular study, the direct vapor equilibration method is the least expensive and least time 

consuming choice. However, tradeoffs in accuracy are sacrificed with direct vapor 

equilibration, especially in low water content soils (<5% gravimetric water content of less 
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than 3 g of water in the sample) and consolidated shales (Hendry et al., 2015; Wassenaar et 

al., 2008). Sample storage time and storage containers must also be considered when using 

this method. Hendry et al. (2015) showed that this method is analytically reproducible using 

Ziploc® freezer bags for storage times less than 10 days, while storage for longer periods of 

time may cause fractionation of the isotopic signal due to evaporation or microbial activity. 

Sprenger et al. (2015a) showed storage times of up to 30 days when using laminated coffee 

bags with up to 90% less water loss than Ziploc bags after 30 days. To eliminate microbial 

activity effects, others have recommended sterilization (Hsieh et al., 1998). There is also no 

defined standard for headspace equilibration times across sample types with equilibration 

times varying from 15 h to 7 days (Garvelmann et al., 2012; Hendry et al., 2013; Mueller et 

al., 2014; Sprenger et al., 2015b). Our results further suggest that this method produces 

results that differ significantly from other methods except at higher water contents in silty 

sand. However, at water contents above 20% very similar results were demonstrated in the 

silty sand as compared to squeezing and centrifugation. This means that at higher water 

contents and in coarse soils the results from direct equilibration, squeezing, and 

centrifugation would generally be cross-comparable. 

For matching plant waters to soil water sources in ecohydrological settings, much higher 

precisions would be required than for the previous scenario. To answer research questions 

about which water pool/s plants may be accessing (although recent work suggests that such 

water is likely at a scale poorly represented by sample sizes in each of our methods 

compared—(Evaristo et al., 2016)), there may only be very small differences in isotope 

ratios, making precision a top priority, no matter the cost. According to the results of our 

study, high pressure mechanical squeezing or centrifugation are the best options. Contrary to 



 

 

This article is protected by copyright. All rights reserved. 

Kelln et al. (2001), squeezed samples in this study showed small deviation from the added 

reference water compared to all other methods, even for the clayey loam. Squeezing 

conversely, has a high capital cost upfront with a low consumable cost and is very manpower 

intensive and time consuming; while centrifugation has a similar capital cost, is less time 

consuming and large numbers of samples (8–24 samples depending on rotor size every 15 

minutes) can be processed daily. If squeezing is the selected extraction method, care must be 

taken with respect to sample storage; normally, less than 10 samples will be processed for 

each 24 hour period, so it could take weeks to months to get through a large sampling 

program, consequently, storage stability is paramount. Also, squeezing coarser soils at low 

water contents is sometimes not possible. Since isotope values obtained from both squeezing 

and centrifugation closely match the added reference water for this study, we would 

recommend either of these methods if a sufficient amount of soil sample material (>200g for 

squeezing and >50g for centrifugation) is available so that an adequate volume of water for 

isotope analysis can be withdrawn from samples. 

Currently, cryogenic extraction is the most common tool for extracting both plant and soil 

water (Orlowski et al., 2016). The attractiveness of this method is the ability to obtain 

measurable amounts of water from very small sample sizes (<10g). However, cryogenic 

extraction involves high capital and operating costs (e.g. costs for system maintenance or 

liquid nitrogen) and is time consuming.
1
 Soils also present their own set of unique challenges 

during cryogenic extraction as pointed out in this study and others (e.g. Orlowski et al., 

                                                 

1
 Many plant species also expel alcohols along with the extracted water and can subsequently only be analyzed 

on IRMS (costly and time consuming) instead of the faster, less expensive OA-ICOS (West et al., 2010). Also, 

thus far, none of the  isotope effects associated with soils have been observed during plant water extractions 

(Koeniger et al., 2011; Munksgaard et al., 2014; Peters and Yakir, 2008). Therefore, plant water extractions are 

assumed not to be problematic in this regard. 
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2016). The extreme temperature and pressure conditions during extraction are likely to 

mobilize both hygroscopic (Koeniger et al., 2011) and biologically bound water (Sprenger et 

al., 2015a). In addition, cryogenic extraction may have an effect on removal of clay interlayer 

water and hydrogen bonds as already discussed. Some have suggested utilizing higher 

temperatures for clayey loam soil types for recovering initial isotopic composition, as well as 

the extraction of ad- and absorbed water attached to clay minerals (Araguás-Araguás et al., 

1995; Walker et al., 1994). These studies have also shown that extraction temperatures may 

affect isotope results. Many studies (Koeniger et al., 2011; Orlowski et al., 2013; West et al., 

2006) including this one, show essentially complete extraction in terms of water recovery by 

weight (our recovery was >99%). For the two soil types tested, we observed statistically 

similar results on both cryogenic systems showing that when exact experimental guidelines 

are followed on the same set of soils, results are cross-comparable to each other (see 

Orlowski et al., 2016 for further discussion). 

Cryogenic extraction and microwave extraction are similar in that they both use heat 

(approximately 60–80 °C for microwave and >90 °C for cryogenic) and vacuum (970 hPa 

over 10 min (Munksgaard et al., 2014) for microwave and 0.1 Pa for cryogenic). Since 

microwave extraction for water extraction is new, little is known about the effects soil 

properties play on the isotope results. Other issues such as phase change, temperature, and 

pressure effects associated with this method are also still poorly understood. Although the 

method shows promise, much more needs to be done with respect to delineating all the 

factors that may influence the extracted isotopic composition. Further work is needed to 

precisely determine which set of parameters (e.g. time, irradiation) work best for specific soil 

types and water contents. The ability to rapidly extract water in vapor form coupled directly 
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to an OA-ICOS is an attractive future option and could potentially be one of the quickest and 

least expensive methods of analysis once the methodology has been proven. 

5 CONCLUSIONS 

We have examined five different soil water extraction methods used for the analysis of the 

stable isotopes of water on two physicochemically different soil types (silty sand and clayey 

loam) at three water contents (8%, 20%, and 30%). Recent literature has called for 

intercomparison between the methods (McDonnell, 2014; Orlowski et al., 2016; Sprenger et 

al., 2015a) used to study water movement through soil profiles at hillslope and watershed 

scales, mine reclamation landforms and benchtop studies of soil pore water and its interaction 

with minerals. This study is the first to encompass five commonly used extraction methods 

within a very explicit set of parameters e.g. using the same standard soil material and water 

contents throughout all of our intercomparison experiments. 

We compared δ
2
H and δ

18
O analyses on both an OA-ICOS and IRMS, with insignificant 

differences in results recorded between the two, showing that organic contamination (via e.g. 

methanol, ethanol, acids, glycols, and similar species) was non-detectable. For studies 

demanding extremely precise results or with potential organic contamination, water 

extraction techniques and machine selection are critical. The now-standard cryogenic 

extraction technique was outperformed by both squeezing and centrifugation with respect to 

labelled water isotopic recovery ratio. For studies requiring less precision, the direct vapor 

equilibration method is suitable, with precision being greater for sandy soil and nearly 

comparable to centrifugation. Microwave extraction protocols are still developing and we 

would caution (at this time) such use as a standard approach for soil water extraction. 

Overall, soil type had a direct effect on many of the methods associated with a phase change 
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(cryogenic extraction, microwave, direct vapor equilibration), while those methods involving 

purely mechanical forces tended to produce similar results, comparable to each other with 

respect to soil type. 

Lastly, although this study encompasses many techniques, questions remain, particularly for 

extractions from soils with low water contents. Future research should focus on clay 

mineralogy, organic matter, and water content effects as well as the effect of drying and 

rewetting on interlayer or adsorbed water. Alternative approaches should also be explored to 

assess whether or not the drying and rewetting process affects the isotopic composition as 

compared to a bulk soil collection in-situ with subsequent methods analyses. 

 

ACKNOWLEDGEMENTS 

We thank Kim Janzen, Cody Millar, and Anna Winkler for their lab-support. This research 

was supported by an NSERC Discovery Grant to J. J. McDonnell. The U.S. Forest Service 

and the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, 

Bioenergy Technologies Office are thanked for their support. 

  



 

 

This article is protected by copyright. All rights reserved. 

REFERENCES 

Araguás-Araguás, L., Rozanski, K., Gonfiantini, R. and Louvat, D.: Isotope effects 

accompanying vacuum extraction of soil water for stable isotope analyses, J. Hydrol., 168(1–

4), 159–171, doi:10.1016/0022-1694(94)02636-P, 1995. 

Barrow, N. J. and Whelan, B. R.: A study of a method for displacing soil solution by 

centrifuging with an immiscible liquid, J. Environ. Qual., 9(2), 315–319, 

doi:10.2134/jeq1980.00472425000900020031x, 1980. 

Batley, G. and Giles, M.: Solvent displacement of sediment interstitial waters before trace-

metal analysis, Water Res., 13(9), 879–886, doi:10.1016/0043-1354(79)90223-9, 1979. 

di Bonito, M., Breward, N., Crout, N., Smith, B. and Young, S.: Overview of Selected Soil 

Pore Water Extraction Methods for the Determination of Potentially Toxic Elements in 

Contaminated Soils: Operational and Technical Aspects, in Environmental Geochemistry: 

site characterization, data analysis and case histories, edited by B. de Vivo, H. E. Belkin, and 

A. Lima, pp. 213–249, Elsevier, London, UK., 2008. 

Böttcher, G., Brumsack, H.-J., Heinrichs, H. and Pohlmann, M.: A new high-pressure 

squeezing technique for pore fluid extraction from terrestrial soils, Water. Air. Soil Pollut., 

94(3-4), 289–296, doi:10.1007/BF02406064, 1997. 

Craig, H.: Standard for reporting concentrations of deuterium and oxygen-18 in natural 

waters, Science, 133(3467), 1833, 1961. 

Dalton, F. N.: Plant root water extraction studies using stable isotopes, Plant Soil, 111(2), 

217–221, 1988. 

Dawson, T. E. and Ehleringer, J. R.: Isotopic enrichment of water in the ―woody‖ tissues of 

plants: Implications for plant water source, water uptake, and other studies which use the 

stable isotopic composition of cellulose, Geochim. Cosmochim. Acta, 57(14), 3487–3492, 

doi:10.1016/0016-7037(93)90554-A, 1993. 

Dubbert, M., Piayda, A., Cuntz, M., Correia, A. C., Costa e Silva, F., Pereira, J. S. and 

Werner, C.: Stable oxygen isotope and flux partitioning demonstrates understory of an oak 

savanna contributes up to half of ecosystem carbon and water exchange, Front. Plant Sci., 5, 

doi:10.3389/fpls.2014.00530, 2014. 

Edmunds, W. M. and Bath, A. H.: Centrifuge extraction and chemical analysis of interstitial 

waters, Environ. Sci. Technol., 10(5), 467–472, 1976. 

Ehleringer, J. R., Roden, J. and Dawson, T. E.: Assessing Ecosystem-Level Water Relations 

Through Stable Isotope Ratio Analyses, in Methods in Ecosystem Science, edited by O. E. 

Sala, R. B. Jackson, H. A. Mooney, and R. W. Howarth, pp. 181–198, Springer, New York, 

NY, USA., 2000. 



 

 

This article is protected by copyright. All rights reserved. 

Evaristo, J., McDonnell, J. J., Scholl, M. A., Bruijnzeel, L. A. and Chun, K. P.: Insights into 

plant water uptake from xylem-water isotope measurements in two tropical catchments with 

contrasting moisture conditions, Hydrol. Process., in press, doi:10.1002/hyp.10841, 2016. 

Figueroa-Johnson, M. A., Tindall, J. A. and Friedel, M.: A Comparison of 
18

Oδ Composition 

of Water Extracted from Suction Lysimeters, Centrifugation, and Azeotropic Distillation, 

Water. Air. Soil Pollut., 184(1-4), 63–75, doi:10.1007/s11270-007-9399-8, 2007. 

Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J. and Himmelsbach, T.: In-situ 

unsaturated zone stable water isotope (
2
H and 

18
O) measurements in semi-arid environments: 

a soil water balance, Hydrol. Earth Syst. Sci., 20, 715–731, doi:10.5194/hess-20-715-2016, 

2016. 

Garvelmann, J., Kuells, C. and Weiler, M.: A porewater-based stable isotope approach for the 

investigation of subsurface hydrological processes, Hydrol. Earth Syst. Sci., 16(2), 631–640, 

doi:10.5194/hess-16-631-2012, 2012. 

Goebel, T. S. and Lascano, R. J.: System for high throughput water extraction from soil 

material for stable isotope analysis of water, J. Anal. Sci. Methods Instrum., 02(04), 203–207, 

doi:10.4236/jasmi.2012.24031, 2012. 

Hendry, M. J., Barbour, S. L., Novakowski, K. and Wassenaar, L. I.: Paleohydrogeology of 

the Cretaceous sediments of the Williston Basin using stable isotopes of water, Water Resour. 

Res., 49(8), 4580–4592, doi:10.1002/wrcr.20321, 2013. 

Hendry, M. J., Schmeling, E., Wassenaar, L. I., Barbour, S. L. and Pratt, D.: Determining the 

stable isotope composition of pore water from saturated and unsaturated zone core: 

improvements to the direct vapour equilibration laser spectrometry method, Hydrol. Earth 

Syst. Sci., 19(11), 4427–4440, doi:10.5194/hess-19-4427-2015, 2015. 

Hsieh, J. C. C., Savin, S. M., Kelly, E. F. and Chadwick, O. A.: Measurement of soil-water 

δ
18

O values by direct equilibration with CO2, Geoderma, 82(1-3), 255–268, 

doi:10.1016/S0016-7061(97)00104-3, 1998. 

Ignatev, A., Velivetckaia, T., Sugimoto, A. and Ueta, A.: A soil water distillation technique 

using He-purging for stable isotope analysis, J. Hydrol., 498, 265–273, 

doi:10.1016/j.jhydrol.2013.06.032, 2013. 

Ingraham, N. L. and Shadel, C.: A comparison of the toluene distillation and vacuum/heat 

methods for extracting soil water for stable isotopic analysis, J. Hydrol., 140(1-4), 371–387, 

doi:10.1016/0022-1694(92)90249-U, 1992. 

Isaac, M. E. and Anglaaere, L. C. N.: An in situ approach to detect tree root ecology: linking 

ground-penetrating radar imaging to isotope-derived water acquisition zones, Ecol. Evol., 

3(5), 1330–1339, doi:10.1002/ece3.543, 2013. 



 

 

This article is protected by copyright. All rights reserved. 

Jusserand, C.: Extraction De L’Eau Interstitielle Des Sediments Et Des Sols: Comparaison 

Des Valeurs De L’Oxygene 18 Par Differentes Methodes Premiers Resultats, Catena, 7(1), 

87–96, doi:10.1016/S0341-8162(80)80006-3, 1980. 

Kelln, C. J., Wassenaar, L. I. and Hendry, M. J.: Stable Isotopes (δ
18

O, δ
2
H) of Pore Waters 

in Clay-Rich Aquitards: A Comparison and Evaluation of Measurement Techniques, Ground 

Water Monit. Remediat., 21(2), 108–116, doi:10.1111/j.1745-6592.2001.tb00306.x, 2001. 

Kendall, C. and Coplen, T. B.: Multi-sample conversion of water to hydrogen by zinc for 

stable isotope determination, Anal. Chem., 57(7), 1437–1440, doi:10.1021/ac00284a058, 

1985. 

Koehler, G., Wassenaar, L. I. and Hendry, M. J.: An automated technique for measuring δD 

and δ
18

O values of porewater by direct CO2 and H2 equilibration, Anal. Chem., 72(22), 5659–

5664, doi:10.1021/ac000498n, 2000. 

Koeniger, P., Marshall, J. D., Link, T. and Mulch, A.: An inexpensive, fast, and reliable 

method for vacuum extraction of soil and plant water for stable isotope analyses by mass 

spectrometry, Rapid Commun. Mass Spectrom., 25(20), 3041–3048, doi:10.1002/rcm.5198, 

2011. 

Landon, M. ., Delin, G. ., Komor, S. . and Regan, C. .: Comparison of the stable-isotopic 

composition of soil water collected from suction lysimeters, wick samplers, and cores in a 

sandy unsaturated zone, J. Hydrol., 224(1–2), 45–54, doi:10.1016/S0022-1694(99)00120-1, 

1999. 

Landon, M. K., Delin, G. N., Komor, S. C. and Regan, C. P.: Relation of Pathways and 

Transit Times of Recharge Water to Nitrate Concentrations Using Stable Isotopes., Ground 

Water, 38(3), 381–395, doi:10.1111/j.1745-6584.2000.tb00224.x, 2000. 

Leen, J. B., Berman, E. S. F., Liebson, L. and Gupta, M.: Spectral contaminant identifier for 

off-axis integrated cavity output spectroscopy measurements of liquid water isotopes, Rev. 

Sci. Instrum., 83(4), doi:10.1063/1.4704843, 2012. 

Liu, Y., Xu, Z., Duffy, R., Chen, W., An, S. and Liu, S.: Analyzing relationships among 

water uptake patterns, rootlet biomass distribution and soil water content profile in a 

subalpine shrubland using water isotopes, Eur. J. Soil Biol., doi:10.1016/j.ejsobi.2011.07.012, 

2011. 

LUFA Speyer: German State Research Institute for Agriculture, Speyer, DE, 

http://www.lufa-speyer.de/index.php/dienstleistungen/standardboeden/8-

dienstleistungen/artikel/57-standard-soils (Accessed 15 April 2015), 2015. 

McConville, C., Kalin, R. M. and Flood, D.: Direct equilibration of soil water for δ
18

O 

analysis and its application to tracer studies, Rapid Commun. Mass Spectrom., 13(13), 1339–

1345, doi:10.1002/(SICI)1097-0231(19990715)13:13<1339::AID-RCM559>3.0.CO;2-N, 

1999. 



 

 

This article is protected by copyright. All rights reserved. 

McDonnell, J. J.: The two water worlds hypothesis: ecohydrological separation of water 

between streams and trees?, Wiley Interdiscip. Rev. Water, 1(4), 323–329, 

doi:10.1002/wat2.1027, 2014. 

Meißner, M., Köhler, M., Schwendenmann, L. and Hölscher, D.: Partitioning of soil water 

among canopy trees during a soil desiccation period in a temperate mixed forest, 

Biogeosciences, 9(8), 3465–3474, doi:10.5194/bg-9-3465-2012, 2012. 

Meißner, M., Köhler, M., Schwendenmann, L., Hölscher, D. and Dyckmans, J.: Soil water 

uptake by trees using water stable isotopes (δ
2
H and δ

18
O)−a method test regarding soil 

moisture, texture and carbonate, Plant Soil, 376(1-2), 327–335, doi:10.1007/s11104-013-

1970-z, 2014. 

Mubarak, A. and Olsen, R.: Immiscible displacement of soil solution by centrifugation, Soil 

Sci. Soc. Am. J., 40(2), 329–331, 1976. 

Mueller, M. H., Alaoui, A., Kuells, C., Leistert, H., Meusburger, K., Stumpp, C., Weiler, M. 

and Alewell, C.: Tracking water pathways in steep hillslopes by δ
18

O depth profiles of soil 

water, J. Hydrol., 519, Part A, 340–352, doi:10.1016/j.jhydrol.2014.07.031, 2014. 

Munksgaard, N. C., Cheesman, A. W., Wurster, C. M., Cernusak, L. A. and Bird, M. I.: 

Microwave extraction–isotope ratio infrared spectroscopy (ME-IRIS): a novel technique for 

rapid extraction and in-line analysis of δ
18

O and δ
2
H values of water in plants, soils and 

insects, Rapid Commun. Mass Spectrom., 28(20), 2151–2161, doi:10.1002/rcm.7005, 2014. 

Nelson, S. T.: A simple, practical methodology for routine VSMOW/SLAP normalization of 

water samples analyzed by continuous flow methods, Rapid Commun. Mass Spectrom., 

14(12), 1044–1046, doi:10.1002/1097-0231(20000630)14:12<1044::AID-

RCM987>3.0.CO;2-3, 2000. 

O’Driscoll, M. A., DeWalle, D. R., McGuire, K. J. and Gburek, W. J.: Seasonal 
18

O 

variations and groundwater recharge for three landscape types in central Pennsylvania, USA, 

J. Hydrol., 303(1–4), 108–124, doi:10.1016/j.jhydrol.2004.08.020, 2005. 

Oerter, E., Finstad, K., Schaefer, J., Goldsmith, G. R., Dawson, T. and Amundson, R.: 

Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, 

Na) adsorbed to phyllosilicate clay minerals, J. Hydrol., 515, 1–9, 

doi:10.1016/j.jhydrol.2014.04.029, 2014. 

O’Neil, J. R. and Truesdell, A. H.: Oxygen isotope fractionation studies of solute-water 

interactions, in Stable Isotope Geochemistry: A Tribute to Samuel Epstein, vol. 3, edited by 

H. Taylor Jr., J. R. O’Neil, and I. R. Kaplan, pp. 17–25, Geochem. Soc., 1991. 

Orlowski, N., Frede, H.-G., Brüggemann, N. and Breuer, L.: Validation and application of a 

cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis, J. 

Sens. Sens. Syst., 2(2), 179–193, doi:10.5194/jsss-2-179-2013, 2013. 



 

 

This article is protected by copyright. All rights reserved. 

Orlowski, N., Kraft, P. and Breuer, L.: Exploring water cycle dynamics through sampling 

multitude stable water isotope pools in a small developed landscape of Germany, Hydrol. 

Earth Syst. Sci. Discuss., 12(2), 1809–1853, doi:10.5194/hessd-12-1809-2015, 2015. 

Orlowski, N., Breuer, L. and McDonnell, J. J.: Critical issues with cryogenic extraction of 

soil water for stable isotope analysis, Ecohydrol., 9(1), 1–5, doi:10.1002/eco.1722, 2016. 

Peters, L. I. and Yakir, D.: A direct and rapid leaf water extraction method for isotopic 

analysis, Rapid Commun. Mass Spectrom., 22(18), 2929–2936, doi:10.1002/rcm.3692, 2008. 

Picarro: IM-CRDS System for Isotopic Water Analysis, 

http://www.picarro.com/isotope_analyzers/im_crds (Accessed 17 April 2015), 2015. 

Revesz, K. and Woods, P. H.: A method to extract soil water for stable isotope analysis, J. 

Hydrol., 115(1-4), 397–406, doi:10.1016/0022-1694(90)90217-L, 1990. 

Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.-L., Gaudet, J.-P., Richard, P., 

Vauclin, M. and Bariac, T.: Partitioning evapotranspiration fluxes into soil evaporation and 

plant transpiration using water stable isotopes under controlled conditions, Hydrol. Process., 

24(22), 3177–3194, doi:10.1002/hyp.7743, 2010. 

Rothfuss, Y., Vereecken, H. and Brüggemann, N.: Monitoring water stable isotopic 

composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy, 

Water Resour. Res., 49, 1–9, doi:10.1002/wrcr.20311, 2013. 

Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., 

Vereecken, H. and Brüggemann, N.: Long-term and high-frequency non-destructive 

monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. 

Sci., 19(10), 4067–4080, doi:10.5194/hess-19-4067-2015, 2015. 

Ruppenthal, M., Oelmann, Y. and Wilcke, W.: Isotope ratios of nonexchangeable hydrogen 

in soils from different climate zones, Geoderma, 155(3–4), 231–241, 

doi:10.1016/j.geoderma.2009.12.005, 2010. 

Savin, S. M. and Epstein, S.: The oxygen and hydrogen isotope geochemistry of clay 

minerals, Geochim. Cosmochim. Acta, 34(1), 25–42, doi:10.1016/0016-7037(70)90149-3, 

1970. 

Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T. and Seibt, U.: 

Concentration effects on laser-based δ
18

O and δ
2
H measurements and implications for the 

calibration of vapour measurements with liquid standards, Rapid Commun. Mass Spectrom., 

24(24), 3553–3561, doi:10.1002/rcm.4813, 2010. 

Scrimgeour, C. M.: Measurement of plant and soil water isotope composition by direct 

equilibration methods, J. Hydrol., 172(1-4), 261–274, doi:10.1016/0022-1694(95)02716-3, 

1995. 



 

 

This article is protected by copyright. All rights reserved. 

Sofer, Z. and Gat, J. R.: Activities and concentrations of oxygen-18 in concentrated aqueous 

salt solutions: Analytical and geophysical implications, Earth Planet. Sci. Lett., 15(3), 232–

238, doi:10.1016/0012-821X(72)90168-9, 1972. 

Sprenger, M., Herbstritt, B. and Weiler, M.: Established methods and new opportunities for 

pore water stable isotope analysis, Hydrol. Process., doi:10.1002/hyp.10643, 2015a. 

Sprenger, M., Volkmann, T. H. M., Blume, T. and Weiler, M.: Estimating flow and transport 

parameters in the unsaturated zone with pore water stable isotopes, Hydrol. Earth Syst. Sci., 

19(6), 2617–2635, doi:10.5194/hess-19-2617-2015, 2015b. 

Stumpp, C., Maloszewski, P., Stichler, W. and Fank, J.: Environmental isotope (δ
18

O) and 

hydrological data to assess water flow in unsaturated soils planted with different crops: Case 

study lysimeter station ―Wagna‖ (Austria), J. Hydrol., 369(1–2), 198–208, 

doi:10.1016/j.jhydrol.2009.02.047, 2009. 

Thomas, E. M., Lin, H., Duffy, C. J., Sullivan, P. L., Holmes, G. H., Brantley, S. L. and Jin, 

L.: Spatiotemporal Patterns of Water Stable Isotope Compositions at the Shale Hills Critical 

Zone Observatory: Linkages to Subsurface Hydrologic Processes, Vadose Zone J., 12(4), 0, 

doi:10.2136/vzj2013.01.0029, 2013. 

Thorburn, P. J., Walker, G. R. and Brunel, J. ‐P: Extraction of water from Eucalyptus trees 

for analysis of deuterium and oxygen‐18: laboratory and field techniques, Plant Cell 

Environ., 16(3), 269–277, doi:10.1111/j.1365-3040.1993.tb00869.x, 1993. 

Timbe, E., Windhorst, D., Crespo, P., Frede, H.-G., Feyen, J. and Breuer, L.: Understanding 

uncertainties when inferring mean transit times of water trough tracer-based lumped-

parameter models in Andean tropical montane cloud forest catchments, Hydrol. Earth Syst. 

Sci., 18(4), 1503–1523, doi:10.5194/hess-18-1503-2014, 2014. 

VanDeVelde, J. H. and Bowen, G. J.: Effects of chemical pretreatments on the hydrogen 

isotope composition of 2:1 clay minerals, Rapid Commun. Mass Spectrom., 27(10), 1143–

1148, doi:10.1002/rcm.6554, 2013. 

Vogel, T., Sanda, M., Dusek, J., Dohnal, M. and Votrubova, J.: Using Oxygen-18 to Study 

the Role of Preferential Flow in the Formation of Hillslope Runoff, Vadose Zone J., 9(2), 

252, doi:10.2136/vzj2009.0066, 2010. 

Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable 

isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18(5), 1819–1833, doi:10.5194/hess-18-

1819-2014, 2014. 

Walker, G. R., Woods, P. H. and Allison, G. B.: Interlaboratory comparison of methods to 

determine the stable isotope composition of soil water, Chem. Geol., 111(1-4), 297–306, 

doi:10.1016/0009-2541(94)90096-5, 1994. 



 

 

This article is protected by copyright. All rights reserved. 

Wang, P., Song, X., Han, D., Zhang, Y. and Zhang, B.: Determination of evaporation, 

transpiration and deep percolation of summer corn and winter wheat after irrigation, Agric. 

Water Manag., 105, 32–37, doi:10.1016/j.agwat.2011.12.024, 2012. 

Wassenaar, L. I., Hendry, M. J., Chostner, V. L. and Lis, G. P.: High resolution pore water 

δ
2
H and δ

18
O measurements by H2O (liquid)-H2O (vapor) equilibration laser spectroscopy, 

Environ. Sci. Technol., 42(24), 9262–9267, doi:10.1021/es802065s, 2008. 

Wassenaar, L. I., Ahmad, M., Aggarwal, P., van Duren, M., Pöltenstein, L., Araguas, L. and 

Kurttas, T.: Worldwide proficiency test for routine analysis of δ
2
H and δ

18
O in water by 

isotope-ratio mass spectrometry and laser absorption spectroscopy, Rapid Commun. Mass 

Spectrom., 26(15), 1641–1648, doi:10.1002/rcm.6270, 2012. 

Weihermüller, L., Kasteel, R., Vanderborght, J., Pütz, T. and Vereecken, H.: Soil Water 

Extraction with a Suction Cup, Vadose Zone J., 4(4), 899, doi:10.2136/vzj2004.0156, 2005. 

Wenner, D. B., Ketcham, P. D. and Dowd, J. F.: Stable isotopic composition of waters in a 

small Piedmont watershed, in Stable isotope geochemistry: A tribute to Samuel Epstein, 

edited by H. Taylor, J. O’Neill, and I. Kaplan, pp. 195–203, The Geochemical Society, , 

Spec. Publ. No.3, St. Louis, MO., 1991. 

Wershaw, R. L., Friedman, I., Heller, S. J. and Frank, P. A.: Hydrogen isotopic fractionation 

of water passing through trees, in Advances in Organic Geochemistry: Proceedings of the 

Third International Congress, edited by F. Hobson and M. Speers, pp. 55–67, Pergamon Press 

Ltd., Elsevier, New York, USA., 1966. 

West, A. G., Patrickson, S. J. and Ehleringer, J. R.: Water extraction times for plant and soil 

materials used in stable isotope analysis, Rapid Commun. Mass Spectrom., 20(8), 1317–

1321, doi:10.1002/rcm.2456, 2006. 

West, A. G., Goldsmith, G. R., Brooks, P. D. and Dawson, T. E.: Discrepancies between 

isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope 

analysis of plant and soil waters, Rapid Commun. Mass Spectrom., 24(14), 1948–1954, 

doi:10.1002/rcm.4597, 2010. 

West, A. G., Goldsmith, G. R., Matimati, I. and Dawson, T. E.: Spectral analysis software 

improves confidence in plant and soil water stable isotope analyses performed by isotope 

ratio infrared spectroscopy (IRIS), Rapid Commun. Mass Spectrom., 25(16), 2268–2274, 

doi:10.1002/rcm.5126, 2011. 

White, J. W. C., Cook, E. R., Lawrence, J. R. and Wallace S., B.: The D/H ratios of sap in 

trees: Implications for water sources and tree ring D/H ratios, Geochim. Cosmochim. Acta, 

49(1), 237–246, doi:10.1016/0016-7037(85)90207-8, 1985. 

Williams, D. G. and Ehleringer, J. R.: Intra- and interspecific variation for summer 

precipitation use in pinyon-juniper woodlands, Ecol. Monogr., 70(4), 517–537, 

doi:10.2307/2657185, 2000. 



 

 

This article is protected by copyright. All rights reserved. 

Windhorst, D., Kraft, P., Timbe, E., Frede, H.-G. and Breuer, L.: Stable water isotope tracing 

through hydrological models for disentangling runoff generation processes at the hillslope 

scale, Hydrol. Earth Syst. Sci., 18(10), 4113–4127, doi:10.5194/hess-18-4113-2014, 2014. 

Zhu, Q.-Z., Sun, Q., Su, Z.-G., Xie, M.-M., Song, J.-Y., Shan, Y.-B., Wang, N. and Chu, G.-

Q.: A Soil Water Extraction Method with Accelerated Solvent Extraction Technique for 

Stable Isotope Analysis, Chin. J. Anal. Chem., 42(9), 1270–1275, doi:10.1016/S1872-

2040(14)60766-0, 2014. 

  



 

 

This article is protected by copyright. All rights reserved. 

Table I: Soil characteristics of LUFA 2.4 (clayey loam) and LUFA 2.1 (silty sand) 

(means ± SD). 

 

Parameter Clayey loam Silty sand 

pH-value 7.2 ± 0.2 5.0 ± 0.3 

Water holding capacity [g 100g
-1

]  43.4 ± 0.8 32.1 ± 1.4 

Organic carbon [%] 1.98 ± 0.18 0.67 ± 0.1 

Cation exchange capacity [meq 100g
-1

] 30.6 ± 5.1 4.1 ± 0.6 

Particle size [mm] distribution according to German DIN [%] 

<0.002 26.0 ± 1.5 2.6 ± 0.6 

0.002–0.006 8.1 ± 1.0 1.5 ± 0.6 

0.006–0.02 15.0 ± 1.2 3.7 ± 0.1 

0.02–0.063 23.3 ± 0.7 7.5 ± 0.6 

0.063–0.2 18.9 ± 0.3 27.5 ± 0.7 

0.2–0.63 7.0 ± 2.2 54.8 ± 1.3 

0.63–2 1.7 ± 0.2 2.4 ± 0.4 
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Table II: Means and standard deviations (SD) of extracted δ
2
H and δ

18
O values from silty sand and clayey loam measured via OA-ICOS and 

IRMS for three different water contents. CA refers to cryogenic extractions performed at the system in Canada and DE in Germany, respectively. 

mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD

Cryogenic extraction (CA) -9.25 0.19 -68.74 1.53 -9.31 0.18 -65.34 1.17 -9.36 0.28 -68.02 2.57 -9.20 0.38 -76.36 2.61 -9.34 0.29 -72.38 2.10 -8.95 0.11 -67.98 0.73

Cryogenic extraction (DE) -9.96 0.43 -67.24 1.32 -9.87 0.41 -63.62 1.05 -8.79 0.59 -66.04 2.31 -11.45 0.73 -79.06 4.53 -10.36 0.83 -68.26 2.04 -9.89 0.88 -69.12 2.74

Squeezing -8.39 0.10 -62.23 0.54 -8.44 0.22 -61.50 0.63 -8.89 0.18 -61.38 0.27 -6.21 0.42 -56.90 2.25 -8.55 0.25 -62.40 0.95 -8.21 0.51 -61.18 1.52

Direct vapour equilibration -7.31 0.52 -60.39 3.60 -8.08 0.72 -60.14 2.75 -7.96 0.48 -60.88 0.94 5.54 1.43 -43.33 6.04 -3.25 1.05 -59.75 4.27 -4.64 0.41 -63.29 1.53

Microwave extraction -8.37 0.71 -46.17 3.27 -8.03 0.32 -34.85 1.47 -10.29 1.95 -49.49 13.71 5.54 1.43 -43.33 6.04 -3.25 1.05 -59.75 4.27 -4.64 0.41 -63.29 1.53

Centrifugation -8.62 0.23 -62.38 0.93 -8.79 0.06 -60.88 0.36 -8.68 0.09 -61.56 1.11 -6.19 0.21 -53.40 0.36 -8.38 0.08 -60.68 0.97 -8.56 0.07 -60.54 0.85

mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD mean SD

Cryogenic extraction (CA) -9.68 0.20 -68.50 1.91 -9.23 0.09 -65.53 0.92 -9.50 0.26 -67.69 2.27 -9.90 0.46 -77.22 2.84 -9.62 0.26 -73.10 2.02 -9.27 0.16 -68.50 0.56

Cryogenic extraction (DE) -9.60 0.11 -66.20 0.53 -9.28 0.15 -63.47 1.23 -9.42 0.40 -64.99 2.89 -11.27 0.36 -79.67 3.04 -10.23 0.13 -69.51 0.96 -10.13 0.70 -69.54 6.57

Squeezing -8.97 0.08 -62.97 0.60 -8.71 0.20 -60.78 0.45 -8.89 0.23 -61.12 0.58 -7.15 0.44 -57.58 2.51 -9.10 0.13 -62.48 0.59 -8.88 0.47 -61.20 1.61

Direct vapour equilibration n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v.

Microwave extraction n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v.

Centrifugation -8.95 0.01 -60.98 0.55 -8.87 0.05 -60.67 0.43 -8.68 0.06 -60.49 0.29 n.v. n.v. n.v. n.v. n.v. n.v. n.v. n.v. -8.75 0.11 -59.05 3.35
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Figure 1. Compilation of statistical results for δ
18

O and δ
2
H of (a) OA-ICOS and (b) IRMS 

measurements from water extractions of silty sand and clayey loam. 
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Figure 2. Performance cross plot of δ
2
H and δ

18
O Z-scores measured via OA-ICOS for all 

extraction methods, both soil types, and water contents (WC). 
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Figure 3. Dual isotope plots for silty sand (A) and clayey loam (B) water extracts of all 

methods and water contents (WC) in comparison to the reference water (red asterisk) for OA-

ICOS and IRMS measurements (insets upper left). 


