96 research outputs found

    Using Nonlinear Response to Estimate the Strength of an Elastic Network

    Full text link
    Disordered networks of fragile elastic elements have been proposed as a model of inner porous regions of large bones [Gunaratne et.al., cond-mat/0009221, http://xyz.lanl.gov]. It is shown that the ratio Γ\Gamma of responses of such a network to static and periodic strain can be used to estimate its ultimate (or breaking) stress. Since bone fracture in older adults results from the weakening of porous bone, we discuss the possibility of using Γ\Gamma as a non-invasive diagnostic of osteoporotic bone.Comment: 4 pages, 4 figure

    A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform

    Get PDF
    BACKGROUND: The degree of anisotropy (DA) on radiographs is related to bone structure, we present a new index to assess DA. METHODS: In a region of interest from calcaneus radiographs, we applied a Fast Fourier Transform (FFT). All the FFT spectra involve the horizontal and vertical components corresponding respectively to longitudinal and transversal trabeculae. By visual inspection, we measured the spreading angles: Dispersion Longitudinal Index (DLI) and Dispersion Transverse Index (DTI) and calculated DA = 180/(DLI+DTI). To test the reliability of DA assessment, we synthesized images simulating radiological projections of periodic structures with elements more or less disoriented. RESULTS: Firstly, we tested synthetic images which comprised a large variety of structures from highly anisotropic structure to the almost isotropic, DA was ranging from 1.3 to 3.8 respectively. The analysis of the FFT spectra was performed by two observers, the Coefficients of Variation were 1.5% and 3.1 % for intra-and inter-observer reproducibility, respectively. In 22 post-menopausal women with osteoporotic fracture cases and 44 age-matched controls, DA values were respectively 1.87 ± 0.15 versus 1.72 ± 0.18 (p = 0.001). From the ROC analysis, the Area Under Curve (AUC) were respectively 0.65, 0.62, 0.64, 0.77 for lumbar spine, femoral neck, total femoral BMD and DA. CONCLUSION: The highest DA values in fracture cases suggest that the structure is more anisotropic in osteoporosis due to preferential deletion of trabeculae in some directions

    A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture.

    No full text
    This case-control study assessed whether the trabecular bone score (TBS), determined from gray-level analysis of DXA images, might be of any diagnostic value, either alone or combined with bone mineral density (BMD), in the assessment of vertebral fracture risk among postmenopausal women with osteopenia. Of 243 postmenopausal Caucasian women, 50-80 years old, with BMD T-scores between -1.0 and -2.5, we identified 81 with osteoporosis-related vertebral fractures and compared them with 162 age-matched controls without fractures. Primary outcomes were BMD and TBS. For BMD, each incremental decrease in BMD was associated with an OR = 1.54 (95% CI = 1.17-2.03), and the AUC was 0.614 (0.550-0.676). For TBS, corresponding values were 2.53 (1.82-3.53) and 0.721 (0.660-0.777). The difference in the AUC for TBS vs. BMD was statistically significant (p = 0.020). The OR for (TBS + BMD) was 2.54 (1.86-3.47) and the AUC 0.732 (0.672-0.787). In conclusion, the TBS warrants a closer look to see whether it may be of clinical usefulness in the determination of fracture risk in postmenopausal osteopenic women

    Micro-imagerie par résonance magnétique nucléaire : application à la structure trabéculaire osseuse

    No full text
    International audienceL'ostéoporose est une maladie caractérisée par une baisse de densité osseuse et une altération de la microarchitecture trabéculaire. Le but de ce travail est la validation d'une technique d'évaluation de l'architecture osseuse effectuée à partir de clichés radiographiques. Dans une première phase, nous avons mis en place un protocole expérimental permettant de reconstruire un modèle numérique 3D du tissu osseux à partir de la technique d'imagerie par résonance magnétique (IRM). Différents outils de caractérisation 3D, tant morphologiques que topologiques, ainsi qu'un outil de simulation numérique du processus radiographique ont été développés et appliqués sur ce modèle. Dans une deuxième phase, nous utiliserons ces outils afin de mettre en évidence des corrélations entre les caractéristiques 3D de la structure et celles de sa projection radiographique

    Micro-imagerie par résonance magnétique nucléaire : application à la structure trabéculaire osseuse

    No full text
    L'ostéoporose est une maladie caractérisée par une baisse de densité osseuse et une altération de la microarchitecture trabéculaire. Le but de ce travail est la validation d'une technique d'évaluation de l'architecture osseuse effectuée à partir de clichés radiographiques. Dans une première phase, nous avons mis en place un protocole expérimental permettant de reconstruire un modèle numérique 3D du tissu osseux à partir de la technique d'imagerie par résonance magnétique (IRM). Différents outils de caractérisation 3D, tant morphologiques que topologiques, ainsi qu'un outil de simulation numérique du processus radiographique ont été développés et appliqués sur ce modèle. Dans une deuxième phase, nous utiliserons ces outils afin de mettre en évidence des corrélations entre les caractéristiques 3D de la structure et celles de sa projection radiographique

    A new computational efficient approach for trabecular bone analysis using beam models generated with skeletonized graph technique

    No full text
    Micro-finite element (FE) analysis is a well established technique for the evaluation of the elasticproperties of trabecular bone, but is limited in its application due to the large number of elements that itrequires to represent the complex internal structure of the bone. In this paper, we present an alternative FE approach that makes use of a recently developed 3D-line Skeleton Graph Analysis (LSGA) technique to represent the complex internal structure of trabecular bone as a network of simple straight beam elements in which the beams are assigned geometrical properties of the trabeculae that they represent. Since an enormous reduction of cputime can be obtained with this beam modeling approach, ranging from approximately 1,200 to 3,600 for the problems investigated here, we think that the FE modeling technique that we introduced could potentially constitute an interesting alternative for the evaluation of the elastic mechanical properties of trabecular bone

    Correlations between trabecular bone score, measured using anteroposterior dual-energy x-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae.

    No full text
    Developing a novel technique for the efficient, noninvasive clinical evaluation of bone microarchitecture remains both crucial and challenging. The trabecular bone score (TBS) is a new gray-level texture measurement that is applicable to dual-energy X-ray absorptiometry (DXA) images. Significant correlations between TBS and standard 3-dimensional (3D) parameters of bone microarchitecture have been obtained using a numerical simulation approach. The main objective of this study was to empirically evaluate such correlations in anteroposterior spine DXA images. Thirty dried human cadaver vertebrae were evaluated. Micro-computed tomography acquisitions of the bone pieces were obtained at an isotropic resolution of 93μm. Standard parameters of bone microarchitecture were evaluated in a defined region within the vertebral body, excluding cortical bone. The bone pieces were measured on a Prodigy DXA system (GE Medical-Lunar, Madison, WI), using a custom-made positioning device and experimental setup. Significant correlations were detected between TBS and 3D parameters of bone microarchitecture, mostly independent of any correlation between TBS and bone mineral density (BMD). The greatest correlation was between TBS and connectivity density, with TBS explaining roughly 67.2% of the variance. Based on multivariate linear regression modeling, we have established a model to allow for the interpretation of the relationship between TBS and 3D bone microarchitecture parameters. This model indicates that TBS adds greater value and power of differentiation between samples with similar BMDs but different bone microarchitectures. It has been shown that it is possible to estimate bone microarchitecture status derived from DXA imaging using TBS

    Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study.

    No full text
    The trabecular bone score (TBS) is a new parameter that is determined from gray-level analysis of dual-energy X-ray absorptiometry (DXA) images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing postmenopausal women with and without fractures. The sample consisted of 45 women with osteoporotic fractures (5 hip fractures, 20 vertebral fractures, and 20 other types of fracture) and 155 women without a fracture. Stratification was performed, taking into account each type of fracture (except hip), and women with and without fractures were matched for age and spine BMD. BMD and TBS were measured at the total spine. TBS measured at the total spine revealed a significant difference between the fracture and age- and spine BMD-matched nonfracture group, when considering all types of fractures and vertebral fractures. In these cases, the diagnostic value of the combination of BMD and TBS likely will be higher compared with that of BMD alone. TBS, as evaluated from standard DXA scans directly, potentially complements BMD in the detection of osteoporotic fractures. Prospective studies are necessary to fully evaluate the potential role of TBS as a complementary risk factor for fracture
    corecore