15,119 research outputs found

    Triaxial compression tests on a crushable sand in dry and wet conditions

    Get PDF
    A calcareous sand from the Persian Gulf is subjected to a series of dry and fully drained saturated triaxial shear tests. The samples are prepared at relative densities of 65% and either left dry or saturated. They are consolidated to confining pressures ranging from 50 to 750 kPa, and sheared until shear strains of 20%. It is shown that the stress-strain and strength characteristics of crushable sand are significantly affected by the presence of water. During shearing of wet samples, there is less dilation, the peak is postponed and a lower shear strength is reached compared to dry samples. Crushability is assessed by comparing the granulometry before and after the triaxial tests. While both dry and wet samples show breakage, the wet sand is consistently more crushable. It is stated that the higher crushability of the wet sand suppresses its dilation during shearing

    Non-equilibrium Transport in the Anderson model of a biased Quantum Dot: Scattering Bethe Ansatz Phenomenology

    Get PDF
    We derive the transport properties of a quantum dot subject to a source-drain bias voltage at zero temperature and magnetic field. Using the Scattering Bethe Anstaz, a generalization of the traditional Thermodynamic Bethe Ansatz to open systems out of equilibrium, we derive exact results for the quantum dot occupation out of equilibrium and, by introducing phenomenological spin- and charge-fluctuation distribution functions in the computation of the current, obtain the differential conductance for large U/\Gamma. The Hamiltonian to describe the quantum dot system is the Anderson impurity Hamiltonian and the current and dot occupation as a function of voltage are obtained numerically. We also vary the gate voltage and study the transition from the mixed valence to the Kondo regime in the presence of a non-equilibrium current. We conclude with the difficulty we encounter in this model and possible way to solve them without resorting to a phenomenological method.Comment: 20 pages, 20 figures, published versio

    Tunneling between helical Majorana modes and helical Luttinger liquids

    Full text link
    We propose and study the charge transport through single and double quantum point contacts setup between helical Majorana modes and an interacting helical Luttinger liquid. We show that the differential conductance decreases for stronger repulsive interactions and that the point contacts become insulating above a critical interaction strength. For a single point contact, the differential conductance as a function of bias voltage shows a series of peaks due to Andreev reflection of electrons in the Majorana modes. In the case of two point contacts, interference phenomena make the structure of the individual resonance peaks less universal and show modulations with different separation distance between the contacts. For small separation distance the overall features remain similar to the case of a single point contact.Comment: v.2: 14 pages, 11 figures; adding one figure, an appendix, and some minor change

    Evaluation of a PACAP Peptide Analogue Labeled with (68)Ga Using Two Different Chelating Agents.

    Get PDF
    OBJECTIVE: The authors have conjugated chelating agents (DOTA and NODAGA) with a peptide (pituitary adenylate cyclase-activating peptide [PACAP] analogue) that has a high affinity for VPAC1 receptors expressed on cancer cells. To determine a suitable chelating agent for labeling with (68)Ga, they have compared the labeling kinetics and stability of these peptide conjugates. METHODS: For labeling, (68)GaCl3 was eluted in 0.1 M HCl from a [(68)Ge-(68)Ga] generator. The influences of peptide concentration, pH, and temperature on the radiolabeling efficiency were studied. The stability was evaluated in saline, human serum, DTPA, transferrin, and metallic ions (FeCl3, CaCl2, and ZnCl2). Cell binding assay was performed using human breast cancer cells (T47D). Tissue biodistribution was studied in normal athymic nude mice. RESULTS: Optimal radiolabeling (\u3e95.0%) of the DOTA-peptide conjugates required a higher (50°C-90°C) temperature and 10 minutes of incubation at pH 2-5. The NODAGA-peptide conjugate needed incubation only at 25°C for 10 minutes. Both radiocomplexes were stable in saline, serum, as well as against transchelation and transmetallation. Cell binding at 37°C for 15 minutes of incubation with (68)Ga-NODAGA-peptide was 34.0% compared to 24.5% for (68)Ga-DOTA-peptide. Tissue biodistribution at 1 hour postinjection of both (68)Ga-labeled peptide conjugates showed clearance through the kidneys. CONCLUSIONS: NODAGA-peptide showed more convenient radiolabeling features than that of DOTA-peptide

    Thermopower and Nernst measurements in a half-filled lowest Landau level

    Full text link
    Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility GaAs/AlxGa1-xAs two dimensional electron system at filling factor v = 1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and anti-symmetric with respect to B = 0 T, respectively. The measured properties of thermopower Sxx at v = 1/2 are consistent with previous experimental results. The Nernst signals Sxy of v = 1/2, which have not been reported previously, are non-zero and show a power law relation with temperature in the phonon-drag dominant region. In the electron-diffusion dominant region, the Nernst signals Sxy of v = 1/2 are found to be significantly smaller than the linear temperature dependent values predicted by Potter et al., and decreasing with temperature faster than linear dependence.Comment: 23 pages, 5 figure
    corecore