113 research outputs found

    Clinical–pathologic significance of cancer stem cell marker expression in familial breast cancers

    Get PDF
    Human breast cancer cells with a CD44(+)/CD24(−/low) or ALDH1+ phenotype have been demonstrated to be enriched for cancer stem cells (CSCs) using in vitro and in vivo techniques. The aim of this study was to determine the association between CD44(+)/CD24(−/low) and ALDH1 expression with clinical–pathologic tumor characteristics, tumor molecular subtype, and survival in a well characterized collection of familial breast cancer cases. 364 familial breast cancers from the Ontario Familial Breast Cancer Registry (58 BRCA1-associated, 64 BRCA2-associated, and 242 familial non-BRCA1/2 cancers) were studied. Each tumor had a centralized pathology review performed. TMA sections of all tumors were analyzed for the expression of ER, PR, HER2, CK5, CK14, EGFR, CD44, CD24, and ALDH1. The Chi square test or Fisher’s exact test was used to analyze the marker associations with clinical–pathologic tumor variables, molecular subtype and genetic subtype. Analyses of the association of overall survival (OS) with marker status were conducted using Kaplan–Meier plots and log-rank tests. The CD44(+)/CD24(−/low) and ALDH1+ phenotypes were identified in 16% and 15% of the familial breast cancer cases, respectively, and associated with high-tumor grade, a high-mitotic count, and component features of the medullary type of breast cancer. CD44(+)/CD24(−/low) and ALDH1 expression in this series were further associated with the basal-like molecular subtype and the CD44(+)/CD24(−/low) phenotype was independently associated with BRCA1 mutational status. The currently accepted breast CSCs markers are present in a minority of familial breast cancers. Whereas the presence of these markers is correlated with several poor prognostic features and the basal-like subtype of breast cancer, they do not predict OS

    A Nanosensor for TNT Detection Based on Molecularly Imprinted Polymers and Surface Enhanced Raman Scattering

    Get PDF
    We report on a new sensor strategy that integrates molecularly imprinted polymers (MIPs) with surface enhanced Raman scattering (SERS). The sensor was developed to detect the explosive, 2,4,6-trinitrotoluene (TNT). Micron thick films of sol gel-derived xerogels were deposited on a SERS-active surface as the sensing layer. Xerogels were molecularly imprinted for TNT using non-covalent interactions with the polymer matrix. Binding of the TNT within the polymer matrix results in unique SERS bands, which allow for detection and identification of the molecule in the MIP. This MIP-SERS sensor exhibits an apparent dissociation constant of (2.3 ± 0.3) × 10−5 M for TNT and a 3 μM detection limit. The response to TNT is reversible and the sensor is stable for at least 6 months. Key challenges, including developing a MIP formulation that is stable and integrated with the SERS substrate, and ensuring the MIP does not mask the spectral features of the target analyte through SERS polymer background, were successfully met. The results also suggest the MIP-SERS protocol can be extended to other target analytes of interest

    The interaction of PP1 with BRCA1 and analysis of their expression in breast tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breast cancer susceptibility gene, <it>BRCA1</it>, is implicated in multiple cellular processes including DNA repair, the transactivation of genes, and the ubiquitination of proteins; however its precise functions remain to be fully understood. Identification and characterization of BRCA1 protein interactions may help to further elucidate the function and regulation of BRCA1. Additionally, detection of changes in the expression levels of <it>BRCA1 </it>and its interacting proteins in primary human breast tumors may further illuminate their role in the development of breast cancer.</p> <p>Methods</p> <p>We performed a yeast two-hybrid study to identify proteins that interact with exon11 of BRCA1 and identified Protein Phosphatase 1β (PP1β), an isoform of the serine threonine phosphatase, PP1. GST-pull down and co-immunoprecipitation assays were performed to further characterize this interaction. Additionally, Real-Time PCR was utilized to determine the expression of <it>BRCA1</it>, <it>PP1</it>α, β and γ in primary human breast tumors and normal breast tissue to identify alterations in the expression of these genes in breast cancer.</p> <p>Results</p> <p>PP1 and BRCA1 co-immunoprecipitate and the region within BRCA1 as well as the specific PP1 interacting domain mediating this interaction were identified. Following mRNA expression analysis, we identified low levels of <it>BRCA1 </it>and variable levels of <it>PP1</it>α and β in primary sporadic human breast tumors. Furthermore, BRCA1, <it>PP1</it>β and PP1γ were significantly higher in normal tissue specimens (BRCA1 p = 0.01, <it>PP1</it>β: p = 0.03, <it>PP1</it>γ, p = 1.9 × 10<sup>-6</sup>) compared to sporadic breast tumor samples. Interestingly, we also identified that ER negative tumors are associated with low levels of <it>PP1</it>α expression.</p> <p>Conclusion</p> <p>The identification and characterization of the interaction of BRCA1 with PP1 and detection of changes in the expression of <it>PP1 </it>and genes encoding other BRCA1 associated proteins identifies important genetic pathways that may be significant to breast tumorigenesis. Alterations in the expression of genes, particularly phosphatases that operate in association with BRCA1, could negatively affect the function of BRCA1 or BRCA1 associated proteins, contributing to the development of breast cancer.</p

    Expression profiling of familial breast cancers demonstrates higher expression of FGFR2 in BRCA2-associated tumors

    Get PDF
    BackgroundBRCA1- and BRCA2-associated tumors appear to have distinct molecular signatures. BRCA1-associated tumors are predominantly basal-like cancers, whereas BRCA2-associated tumors have a predominant luminal-like phenotype. These two molecular signatures reflect in part the two cell types found in the terminal duct lobular unit of the breast. To elucidate novel genes involved in these two spectra of breast tumorigenesis we performed global gene expression analysis on breast tumors from germline BRCA1 and BRCA2 mutation carriers. Methodology Breast tumor RNAs from 7 BRCA1 and 6 BRCA2 mutation carriers were profiled using UHN human 19K cDNA microarrays. Supervised univariate analyses were conducted to identify genes differentially expressed between BRCA1 and BRCA2-associated tumors. Selected discriminatory genes were validated using real time reverse transcription polymerase chain reaction in the tumor RNAs, and/or by immunohistochemistry (IHC) or by in situ hybridization (ISH) on tissue microarrays (TMAs) containing an independent set of 58 BRCA1 and 64 BRCA2-associated tumors. Results Genes more highly expressed in BRCA1-associated tumors included stathmin, osteopontin, TGFβ2 and Jagged 1 in addition to genes previously identified as characteristic of basal-like breast cancers. BRCA2-associated cancers were characterized by the higher relative expression of FGF1 and FGFR2. FGFR2 protein was also more highly expressed in BRCA2-associated cancers (P = 0.004). SignificanceBRCA1-associated tumours demonstrated increased expression of component genes of the Notch and TGFβ pathways whereas the higher expression of FGFR2 and FGF1 in BRCA2-associated cancers suggests the existence of an autocrine stimulatory loop

    Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer

    Get PDF
    Triple-negative breast cancers lack targeted therapies and are subdivided into molecular subtypes, including basal and claudin-low. Preclinical models representing these subtypes are limited. We have developed a murine model in which mammary gland expression of a receptor tyrosine kinase (MET) and loss of tumor suppressor gene p53 (Trp53), synergize to promote tumors with pathological and molecular features of claudin-low breast cancer. These tumors require MET signaling for proliferation, as well as mesenchymal characteristics, which are key features of claudin-low biology. This work associates MET expression and p53 loss with claudin-low breast cancers and highly proliferative breast cancers of poor outcome
    corecore