5,622 research outputs found

    Origin of the different conductive behavior in pentavalent-ion-doped anatase and rutile TiO2_2

    Full text link
    The electronic properties of pentavalent-ion (Nb5+^{5+}, Ta5+^{5+}, and I5+^{5+}) doped anatase and rutile TiO2_2 are studied using spin-polarized GGA+\emph{U} calculations. Our calculated results indicate that these two phases of TiO2_2 exhibit different conductive behavior upon doping. For doped anatase TiO2_2, some up-spin-polarized Ti 3\emph{d} states lie near the conduction band bottom and cross the Fermi level, showing an \emph{n}-type half-metallic character. For doped rutile TiO2_2, the Fermi level is pinned between two up-spin-polarized Ti 3\emph{d} gap states, showing an insulating character. These results can account well for the experimental different electronic transport properties in Nb (Ta)-doped anatase and rutile TiO2_2.Comment: 4 pages, 5 figure

    β-Fluorofentanyls Are pH-Sensitive Mu Opioid Receptor Agonists

    Get PDF
    The concept recently postulated by Stein and co-workers (Science2017, 355, 966) that mu opioid receptor (MOR) agonists possessing amines with attenuated basicity show pH-dependent activity and can selectively act at damaged, low pH tissues has been additionally supported by in vitro studies reported here. We synthesized and tested analogs of fentanyl possessing one or two fluorine atoms at the beta position of the phenethylamine side chain, with additional fluorines optionally added to the benzene ring of the side chain. These compounds were synthesized in 1 to 3 steps from commercial building blocks. The novel bis-fluorinated analog RR-49 showed superior pH sensitivity, with full efficacy relative to DAMGO, but with 19-fold higher potency (IC50) in a MOR cAMP assay at pH 6.5 versus 7.4. Such compounds hold significant promise as analgesics for inflammatory pain with reduced abuse potential

    Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc

    Get PDF
    In this study, we identified two previously described kinase inhibitors—3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(3-methyl-1H-pyrazol-5-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (LY2784544) and 1H-benzimidazole-4-carboxylic acid, 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-(4-morpholinyl)- (GSK2636771)—as novel GPR39 agonists by unbiased small-molecule-based screening using a β-arrestin recruitment screening approach (PRESTO-Tango). We characterized the signaling of LY2784544 and GSK2636771 and compared their signaling patterns with a previously described “GPR39-selective” agonist N-[3-chloro-4-[[[2-(methylamino)-6-(2-pyridinyl)-4- pyrimidinyl]amino]methyl]phenyl]methanesulfonamide (GPR39-C3) at both canonical and noncanonical signaling pathways. Unexpectedly, all three compounds displayed probe-dependent and pathway-dependent allosteric modulation by concentrations of zinc reported to be physiologic. LY2784544 and GS2636771 at GPR39 in the presence of zinc were generally as potent or more potent than their reported activities against kinases in whole-cell assays. These findings reveal an unexpected role of zinc as an allosteric potentiator of small-molecule-induced activation of GPR39 and expand the list of potential kinase off-targets to include understudied G protein–coupled receptors

    miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes

    Get PDF
    Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNA targets. The known miRNA genes in four mammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based on comparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNA targets within the conserved regions in 3′-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap. The database is freely available at

    Quark models of dibaryon resonances in nucleon-nucleon scattering

    Full text link
    We look for ΔΔ\Delta\Delta and NΔN\Delta resonances by calculating NNNN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NNNN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNNN SS-waves, in agreement with the experimental SP07 NNNN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the SS-wave NN resonances disappear when the nucleon size bb falls below 0.53 fm. Both quark models give an IJP=03+IJ^P = 03^+ ΔΔ\Delta\Delta resonance. At b=0.52b=0.52 fm, the value favored by baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the 3D3NN^3D_3^{NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pnpn\to dππd\pi\pi production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound 5S2ΔΔ^5S_2^{\Delta\Delta} state that can give rise to a 1D2NN^1D_2^{NN} resonance. None of the quark models used has bound NΔN\Delta PP-states that might generate odd-parity resonances.Comment: 14 pages, 6 tables, 6 figures; added supplementary results, added/deleted references, added 1 figur

    Working memory dysfunctions predict social problem solving skills in schizophrenia

    Get PDF
    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. (C) 2014 Elsevier Ireland Ltd. All rights reserved
    corecore