8 research outputs found

    Overexpression of the Mitochondrial T3 Receptor p43 Induces a Shift in Skeletal Muscle Fiber Types

    Get PDF
    In previous studies, we have characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43) acting as a mitochondrial transcription factor and consequently stimulating mitochondrial activity and mitochondrial biogenesis. We have established the involvement of this T3 pathway in the regulation of in vitro myoblast differentiation.We have generated mice overexpressing p43 under control of the human α-skeletal actin promoter. In agreement with the previous characterization of this promoter, northern-blot and western-blot experiments confirmed that after birth p43 was specifically overexpressed in skeletal muscle. As expected from in vitro studies, in 2-month old mice, p43 overexpression increased mitochondrial genes expression and mitochondrial biogenesis as attested by the increase of mitochondrial mass and mt-DNA copy number. In addition, transgenic mice had a body temperature 0.8°C higher than control ones and displayed lower plasma triiodothyronine levels. Skeletal muscles of transgenic mice were redder than wild-type animals suggesting an increased oxidative metabolism. In line with this observation, in gastrocnemius, we recorded a strong increase in cytochrome oxidase activity and in mitochondrial respiration. Moreover, we observed that p43 drives the formation of oxidative fibers: in soleus muscle, where MyHC IIa fibers were partly replaced by type I fibers; in gastrocnemius muscle, we found an increase in MyHC IIa and IIx expression associated with a reduction in the number of glycolytic fibers type IIb. In addition, we found that PGC-1α and PPARδ, two major regulators of muscle phenotype were up regulated in p43 transgenic mice suggesting that these proteins could be downstream targets of mitochondrial activity. These data indicate that the direct mitochondrial T3 pathway is deeply involved in the acquisition of contractile and metabolic features of muscle fibers in particular by regulating PGC-1α and PPARδ

    Mitochondrial T3 receptor p43 regulates insulin secretion and glucose homeostasis

    No full text
    Thyroid hormone is a major determinant of energy expenditure and a key regulator of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine receptor (p43) that acts as a mitochondrial transcription factor of the organelle genome, which leads, in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Here we generated mice specifically lacking p43 to address its physiological influence. We found that p43 is required for normal glucose homeostasis. The p43(-/-) mice had a major defect in insulin secretion both in vivo and in isolated pancreatic islets and a loss of glucose-stimulated insulin secretion. Moreover, a high-fat/high-sucrose diet elicited more severe glucose intolerance than that recorded in normal animals. In addition, we observed in p43(-/-) mice both a decrease in pancreatic islet density and in the activity of complexes of the respiratory chain in isolated pancreatic islets. These dysfunctions were associated with a down-regulation of the expression of the glucose transporter Glut2 and of Kir6.2, a key component of the K(ATP) channel. Our findings establish that p43 is an important regulator of glucose homeostasis and pancreatic beta-cell function and provide evidence for the first time of a physiological role for a mitochondrial endocrine receptor

    Depletion of the p43 Mitochondrial T3 Receptor Increases Sertoli Cell Proliferation in Mice

    Get PDF
    Among T3 receptors, TRα1 is ubiquitous and its deletion or a specific expression of a dominant-negative TRα1 isoform in Sertoli cell leads to an increase in testis weight and sperm production. The identification of a 43-kDa truncated form of the nuclear receptor TRα1 (p43) in the mitochondrial matrix led us to test the hypothesis that this mitochondrial transcription factor could regulate Sertoli cell proliferation. Here we report that p43 depletion in mice increases testis weight and sperm reserve. In addition, we found that p43 deletion increases Sertoli cell proliferation in postnatal testis at 3 days of development. Electron microscopy studies evidence an alteration of mitochondrial morphology observed specifically in Sertoli cells of p43-/- mice. Moreover, gene expression studies indicate that the lack of p43 in testis induced an alteration of the mitochondrial-nuclear cross-talk. In particular, the up-regulation of Cdk4 and c-myc pathway in p43-/- probably explain the extended proliferation recorded in Sertoli cells of these mice. Our finding suggests that T3 limits post-natal Sertoli cell proliferation mainly through its mitochondrial T3 receptor p43

    Thyroid hormone action: The p43 mitochondrial pathway. Methods

    No full text
    The possibility that several pathways are involved in the multiplicity of thyroid hormone physiological influences led to searches for the occurrence of T3 extra nuclear receptors. The existence of a direct T3 mitochondrial _pathway is now well established. The demonstration that TR.al mRNA encodes not only a nuclear thyroid hormone receptor but also two proteins imported into ttĂątochondria with molecular masses of 43 and 28 kDa has provided new clues to understand the pleiotropic influence of iodinated hormones. The use of a T3 photo affinity label derivative (T3-PAL) allowed detectiug two mitochondrial T3 binding proteins. In association with western blots using antibodies raised against the T3 nuclear receptor TRal, mitochondrial T3 receptors were identified as truncated T.Ral forms. Import and in organello transcription experiments performed in isolated mitochondria led to the conclusion that p43 is a transcription factor of the mitochondrial genome, inducing changes in the mitochondrial/nuclear crosstalk. Invitro experiments indicated that this T3 mitochondrial pathway affects cell differentiation, apoptosis, andtransformation. Generation of transgenic mice demonstrated the involve1nent of this mitochondrial pathwayin the determination of muscle phenotype, glucose metabolism, and thermogenesis
    corecore