78 research outputs found
Multiple scattering formalism for correlated systems: A KKR+DMFT approach
We present a charge and self-energy self-consistent computational scheme for
correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple
scattering theory with the many-body effects described by the means of
dynamical mean field theory (DMFT). The corresponding local multi-orbital and
energy dependent self-energy is included into the set of radial differential
equations for the single-site wave functions. The KKR Green's function is
written in terms of the multiple scattering path operator, the later one being
evaluated using the single-site solution for the -matrix that in turn is
determined by the wave functions. An appealing feature of this approach is that
it allows to consider local quantum and disorder fluctuations on the same
footing. Within the Coherent Potential Approximation (CPA) the correlated atoms
are placed into a combined effective medium determined by the dynamical mean
field theory (DMFT) self-consistency condition. Results of corresponding
calculations for pure Fe, Ni and FeNi alloys are presented.Comment: 25 pages, 5 fig. acepted PR
Anthropic prediction in a large toy landscape
The successful anthropic prediction of the cosmological constant depends
crucially on the assumption of a flat prior distribution. However, previous
calculations in simplified landscape models showed that the prior distribution
is staggered, suggesting a conflict with anthropic predictions. Here we
analytically calculate the full distribution, including the prior and anthropic
selection effects, in a toy landscape model with a realistic number of vacua,
. We show that it is possible for the fractal prior
distribution we find to behave as an effectively flat distribution in a wide
class of landscapes, depending on the regime of parameter space. Whether or not
this possibility is realized depends on presently unknown details of the
landscape.Comment: 13 page
Measures for a Transdimensional Multiverse
The multiverse/landscape paradigm that has emerged from eternal inflation and
string theory, describes a large-scale multiverse populated by "pocket
universes" which come in a huge variety of different types, including different
dimensionalities. In order to make predictions in the multiverse, we need a
probability measure. In landscapes, the scale factor cutoff measure
has been previously shown to have a number of attractive properties. Here we
consider possible generalizations of this measure to a transdimensional
multiverse. We find that a straightforward extension of scale factor cutoff to
the transdimensional case gives a measure that strongly disfavors large amounts
of slow-roll inflation and predicts low values for the density parameter
, in conflict with observations. A suitable generalization, which
retains all the good properties of the original measure, is the "volume factor"
cutoff, which regularizes the infinite spacetime volume using cutoff surfaces
of constant volume expansion factor.Comment: 30 pages, 1 figure Minor revisions, reference adde
Probabilities in the inflationary multiverse
Inflationary cosmology leads to the picture of a "multiverse," involving an
infinite number of (spatially infinite) post-inflationary thermalized regions,
called pocket universes. In the context of theories with many vacua, such as
the landscape of string theory, the effective constants of Nature are
randomized by quantum processes during inflation. We discuss an analytic
estimate for the volume distribution of the constants within each pocket
universe. This is based on the conjecture that the field distribution is
approximately ergodic in the diffusion regime, when the dynamics of the fields
is dominated by quantum fluctuations (rather than by the classical drift). We
then propose a method for determining the relative abundances of different
types of pocket universes. Both ingredients are combined into an expression for
the distribution of the constants in pocket universes of all types.Comment: 18 pages, RevTeX 4, 2 figures. Discussion of the full probability in
Sec.VI is sharpened; the conclusions are strengthened. Note added explaining
the relation to recent work by Easther, Lim and Martin. Some references adde
Dynamical compactification from de Sitter space
We show that D-dimensional de Sitter space is unstable to the nucleation of
non-singular geometries containing spacetime regions with different numbers of
macroscopic dimensions, leading to a dynamical mechanism of compactification.
These and other solutions to Einstein gravity with flux and a cosmological
constant are constructed by performing a dimensional reduction under the
assumption of q-dimensional spherical symmetry in the full D-dimensional
geometry. In addition to the familiar black holes, black branes, and
compactification solutions we identify a number of new geometries, some of
which are completely non-singular. The dynamical compactification mechanism
populates lower-dimensional vacua very differently from false vacuum eternal
inflation, which occurs entirely within the context of four-dimensions. We
outline the phenomenology of the nucleation rates, finding that the
dimensionality of the vacuum plays a key role and that among vacua of the same
dimensionality, the rate is highest for smaller values of the cosmological
constant. We consider the cosmological constant problem and propose a novel
model of slow-roll inflation that is triggered by the compactification process.Comment: Revtex. 41 pages with 24 embedded figures. Minor corrections and
added reference
Exploring a string-like landscape
We explore inflationary trajectories within randomly-generated
two-dimensional potentials, considered as a toy model of the string landscape.
Both the background and perturbation equations are solved numerically, the
latter using the two-field formalism of Peterson and Tegmark which fully
incorporates the effect of isocurvature perturbations. Sufficient inflation is
a rare event, occurring for only roughly one in potentials. For models
generating sufficient inflation, we find that the majority of runs satisfy
current constraints from WMAP. The scalar spectral index is less than 1 in all
runs. The tensor-to-scalar ratio is below the current limit, while typically
large enough to be detected by next-generation CMB experiments and perhaps also
by Planck. In many cases the inflationary consistency equation is broken by the
effect of isocurvature modes.Comment: 24 pages with 8 figures incorporated, matches version accepted by
JCA
An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning
An anthropic principle has made it possible to answer the difficult question
of why the observable value of cosmological constant (
GeV) is so disconcertingly tiny compared to predicted value of vacuum
energy density GeV. Unfortunately, there is a
darker side to this argument, as it consequently leads to another absurd
prediction: that the probability to observe the value for randomly
selected observer exactly equals to 1. We'll call this controversy an infrared
divergence problem. It is shown that the IRD prediction can be avoided with the
help of a Linde-Vanchurin {\em singular runaway measure} coupled with the
calculation of relative Bayesian probabilities by the means of the {\em
doomsday argument}. Moreover, it is shown that while the IRD problem occurs for
the {\em prediction stage} of value of , it disappears at the {\em
explanatory stage} when has already been measured by the observer.Comment: 9 pages, RevTe
Anthropic prediction for a large multi-jump landscape
The assumption of a flat prior distribution plays a critical role in the
anthropic prediction of the cosmological constant. In a previous paper we
analytically calculated the distribution for the cosmological constant,
including the prior and anthropic selection effects, in a large toy
``single-jump'' landscape model. We showed that it is possible for the fractal
prior distribution we found to behave as an effectively flat distribution in a
wide class of landscapes, but only if the single jump size is large enough. We
extend this work here by investigating a large () toy
``multi-jump'' landscape model. The jump sizes range over three orders of
magnitude and an overall free parameter determines the absolute size of the
jumps. We will show that for ``large'' the distribution of probabilities of
vacua in the anthropic range is effectively flat, and thus the successful
anthropic prediction is validated. However, we argue that for small , the
distribution may not be smooth.Comment: 33 pages, 7 figures Minor revisions made and references added. arXiv
admin note: substantial text overlap with arXiv:0705.256
A Stringy Mechanism for A Small Cosmological Constant
Based on the probability distributions of products of random variables, we
propose a simple stringy mechanism that prefers the meta-stable vacua with a
small cosmological constant. We state some relevant properties of the
probability distributions of functions of random variables. We then illustrate
the mechanism within the flux compactification models in Type IIB string
theory. As a result of the stringy dynamics, we argue that the generic
probability distribution for the meta-stable vacua typically peaks with a
divergent behavior at the zero value of the cosmological constant. However, its
suppression in the single modulus model studied here is modest.Comment: 36 pages, 8 figure
SURVEY OF THE DEPENDENCE ON TEMPERATURE OF THE COERCIVITY OF GARNET-FILMS
The temperature dependence of the domain-wall coercive field of epitaxial magnetic garnets films
has been investigated in the entire temperature range of the ferrimagnetic phase, and has been found
to be described by a set of parametric exponents. In subsequent temperature regions different slopes
were observed, with breaking points whose position was found to be sample dependent. A survey
ba.ed on literature Data as well as on a large number of our own samples shows the general
existence of this piecewise exponential dependence and the presence of the breaking points. This
type of domain-wall coercive field temperature dependence was found in all samples in the large
family of the epitaxial garnets (about 30 specimens of more than ten chemical compositionsj and
also in another strongly anisotropic material (TbFeCo)
- …